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H I G H L I G H T S
� A new approach is proposed to accurately evaluate the volumetric flexibility index.

� The feasible region can be nonconvex, disjoint or non-simply connected in high-dimensional space.
� Random line search provides representative characterization of domain boundaries.
� No prior information of geometric properties is required in the proposed approach.
� Extensive case studies with 2–7 uncertain parameters are provided.
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a b s t r a c t

The volumetric flexibility index ( )FIv of a chemical system can be viewed geometrically as the ratio be-
tween the hypervolume of feasible region and that of a hypercube bounded by the expected upper and
lower limits of uncertain process parameters. Although several methods have already been developed to
compute FIv, none of them are effective for solving the high-dimensional problems defined in nonconvex,
non-simply connected or disconnected regions. While the available shortcut approaches are not accurate
enough, successful tuning of the algorithmic parameters is mandatory for producing credible estimates
with the more elaborate existing strategies.

The above practical issues in volume estimation are thoroughly addressed in the present research.
The most critical step in the proposed procedure is to characterize the feasible region accurately. To this
end, the domain boundaries in parameter space are first identified with the feasible proximity points
obtained by following a random line search algorithm. The Delaunay triangulation technique is then
implemented to generate simplexes on the basis of such near-boundary points. By checking the centroids
of these simplexes, the infeasible ones may be identified and eliminated. Finally, the hypervolumes of all
feasible simplexes are summed to determine the volumetric flexibility index.

Extensive case studies with 2–7 uncertain parameters have been carried out to show the superior
capabilities of the proposed computation strategies.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Sources of uncertainties in a chemical process design are often
multifaceted. They can usually be associated with either “internal”
process parameters, such as the reaction rates and physical prop-
erties, or “external” ones, such as the qualities and flow rates of
feed streams to a reactor. To account for the worst-case scenarios,
Grossmann and his coworkers first proposed a formal definition of
hang).
the operational feasibility/flexibility and developed a quantitative
performance measure accordingly to facilitate process analysis
(Grossmann and Floudas, 1987; Swaney and Grossmann, 1985a,
1985b). More specifically, their flexibility index (denoted in this
paper as FIs) was computed numerically by solving a multi-level
optimization problem. Many researchers later successfully in-
tegrated such a metric in their design procedure, e.g., see Lima
et al. (2010), Riyanto and Chang (2010), and Adi and Chang (2011).
Thorough literature surveys on the related studies have already
been conducted by Ierapetritou (2001, 2009).

It should be noted first that, only when the feasible region is
convex, FIs can be safely considered as a proper flexibility measure.
This prerequisite requirement is clearly impractical since a wide
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variety of chemical engineering models are nonlinear and, thus,
nonconvexity is a common feature that cannot be ignored. Geo-
metrically speaking, the traditional flexibility index can be regarded
as an aggregated indicator of the distances between the given
nominal point and all faces of the biggest inscribable hypercube
inside the feasible region. Hence a feasible region may be grossly
misrepresented by this indicator if the chosen nominal point is very
far off from the center and/or the biggest inscribable hypercube is
much smaller than the feasible region due to concavities.

Lai and Hui (2008) suggested to use an alternative metric, i.e., the
volumetric flexibility index (denoted as FIv), to complement the con-
ventional approach. Essentially, this volumetric index can be viewed in
3-D as the volumetric fraction of the feasible region inside a cube
bounded by the expected upper and lower limits of uncertain process
parameters. Since the total volume of feasible region is calculated
without the need to specify a nominal point and/or to identify the
biggest inscribable cube in the feasible region, the magnitude of FIv

can be more closely linked to process flexibility in cases when the
feasible regions are nonconvex. However, in practical applications, the
feasible regions of such processes may be quite complex and some-
times odd shaped. More specifically, these geometric objects can be
nonconvex, non-simply connected and even disconnected (Croft et al.,
1991; Krantz, 1999; Banerjee and Ierapetritou, 2005). Thus, the accu-
racy of volumetric flexibility evaluation depends heavily on how well
the region boundaries can be characterized.

In fact, quite a few algorithms have already been developed for
computing the hypervolumes of nonconvex feasible regions in the
n-dimensional space, and their pros and cons are briefly sum-
marized as follows:

The simplicial approximation approach proposed by Goyal and
Ierapetritou (2003) is not only quite accurate but also capable of
handling nonconvex regions, while its drawbacks can be mainly at-
tributed to the needs for a priori knowledge of the region shape and,
also, repetitive iteration steps to generate the optimal boundary
points; The α-shape surface reconstruction method (Banerjee and
Ierapetritou, 2005) was designed to handle nonconvex and disjoint
regions. By implementing this algorithm according to properly sam-
pled points, one can generate a reasonable polygonal representation of
the feasible domain. However, the accurate estimate of its hypervo-
lume is attainable only if a suitable α-shape factor can be identified
efficiently. Tuning of such an algorithm parameter in realistic appli-
cations can be very tricky, especially when the feasible regions are
topologically complex; Zilinskas et al. (2006) used sample points
which are uniformly distributed over a unit cube to identify the fea-
sible region of a distillation train, but the corresponding hypervolume
could not be quantified easily; Bates et al. (2007) utilized search cones
to identify the feasible region with uniform sampling points. This
approach is especially impractical for odd-shaped regions since it is
imperative to strike a proper balance between having enough points
to characterize the region well and having too many points as this can
make the model fitting process unstable; By using a fixed number of
auxiliary vectors, the hypervolume of a feasible region may be quickly
determined with accuracy comparable to those of the other methods
(Lai and Hui, 2008). Unfortunately, in cases when the nonconvex
constraints are present, a serious deterioration in estimation accuracy
can occur due to the relatively small number of auxiliary vectors used
in computation; On the other hand, the subspace feasibility test sug-
gested by the same authors is in principle the most accurate numerical
strategy for hypervolume estimation if the size of each subspace can
be made small enough. However, since these subspaces are created by
evenly partitioning the entire hypercube bounded between the upper
and lower parameter limits, some of the tests do not seem to be ne-
cessary if the boundaries of the feasible region can also be taken into
consideration. Therefore, as the dimension of parameter space in-
creases, the huge number of required subspaces can render the
computation inefficient and overwhelming.
Finally, notice that it is possible to characterize the feasible re-
gion even when the closed-form model of a given process is not
available through the use of surrogate-based feasibility analysis. The
so-called high-dimensional model representation (HDMR) has been
adopted in Banerjee and Ierapetritou (2002), Banerjee and Ierape-
tritou (2003) and Banerjee et al. (2010) for input–output mapping of
such processes, while the Kriging-based methodology was later
proposed by Boukouvala and Ierapetritou (2012) for essentially the
same purpose. Although these methods are based on samples, the
developments of surrogate models for black-box problems and
problems with known explicit models have both been reported
(Rogers and Ierapetritou, 2015a, 2015b). This approach involves
developing a surrogate model to represent the feasibility function
and using it to reproduce the feasible region. Note that the de-
pendency on the sample accuracy and the proper surrogate model
are crucial in this approach. Although the surrogate model is often
less computationally expensive, it may lack the physical insights
needed to accurately identify the potential debottlenecking mea-
sures. Notice that this is always an important incentive for locating
the active constraint(s) in traditional flexibility analysis (Grossmann
and Floudas, 1987). Moreover, while the surrogate models have
been applied successfully for feasibility analysis, the resulting index
values may not be identical to those of the traditional flexibility
index ( )FIs or the volumetric flexibility index ( )FIv (Rogers and Ier-
apetritou, 2015a, 2015b). Hence, it is sometimes difficult to compare
these different indices on the same basis.

All aforementioned implementation issues have been ad-
dressed in our studies. The proposed computation procedure is
more effective for handling high-dimensional problems defined in
complex (such as the non-simply connected or disconnected) re-
gions. As mentioned before, the most critical step is concerned
with accurate characterization of the feasible region. To this end,
the domain boundaries in parameter space are depicted in this
work with the feasible proximity points obtained according to a
random line search algorithm. There are two main incentives for
this practice. Firstly, as opposed to the a priori geometric knowl-
edge required in Goyal and Ierapetritou (2003), this random
search (Vempala, 2005) should be effective in sketching the op-
erable region of a given process without the need for analyzing the
nonconvex constraints in advance. Secondly, since two or more
proximity points can be produced with a single line, the proposed
strategy should outperform the other random search methods that
generate and test one point at a time.

Note that it is important to obtain sample points near or at
boundaries since the interior points are not needed in partitioning
a high-dimensional feasible region and computing its hypervo-
lume. For the former purpose, a Delaunay triangulation technique
is applied to create simplexes according to the aforementioned
proximity points. The centroid of every simplex is then checked for
infeasibility, and the hypervolumes of all feasible ones can be
summed for computing the volumetric flexibility index. This
computation strategy can be carried out without repetitively
tuning any algorithmic parameter and, also, the resulting esti-
mates are expected to be at least as accurate as those obtained
with any existing method. It should also be pointed out that the
proposed solution strategy should be more efficient in the pre-
liminary preparation stage since there are virtually no needs for
constructing/modifying model formulations.

The remaining part of this article is organized as follows. Firstly,
since the feasibility check is an essential calculation in evaluating
the hypervolume, the model formulation of the corresponding
optimization problem is given in Section 2 to facilitate clear il-
lustration of the subsequent materials. Section 3 presents an in-
tegrated computation procedure, which includes the algorithms
for producing feasible proximity points by the random line search,
for generating the simplexes in a Delaunay triangulation scheme,
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for calculating the hypervolume of a given feasible region and also
the corresponding volumetric flexibility index. A number of case
studies are then provided in the next section to demonstrate the
feasibility and effectiveness of the proposed approach in produ-
cing accurate flexibility measures for high-dimensional systems
with complex feasible regions. Extensive new results, which can-
not be obtained with the available approaches, are also reported.
Finally, the conclusions are drawn at the end of paper.
2. Feasibility check

As mentioned before, the feasibility check is an essential
computation which is required at various stages of the flexibility
evaluation process. In order to provide accurate explanation, the
following label sets should be first defined:

= { } ( )i iI is the label of an equality constraint 1

= { | } ( )j jJ is the label of an inequality constraint 2

The general design model can be expressed accordingly as

θ( ) = ∀ ∈ ( )h id z x I, , , 0, 3i

θ( ) ≤ ∀ ∈ ( )f jd z x J, , , 0, 4j

where, hi is the ith equality constraint in the design model (e.g.,
the mass or energy balance equation for a processing unit); f j is
the jth inequality constraint in the design model (e.g., a capacity
limit); d represents a vector in which all design variables are
stored; z denotes the vector of adjustable control variables; x is the
vector of state variables; θ denotes the vector of uncertain para-
meters which are assumed to be bounded within a hypercube in
the parameter space, i.e.

θ θ θ≤ ≤ ( )5L U

Note that θU and θL respectively represent the vectors of ex-
pected upper and lower bounds of the uncertain parameters. It
should also be noted that, although the uncertain parameters may
be functions of some of the aforementioned design, control and/or
state variables, these possibilities are excluded for simplicity in the
present study.

It should be noted that, given a fixed design ( ¯ )d and a particular
point (say b) in the parameter hypercube defined by Eq. (5), the
feasibility of this given point cannot be confirmed in a straight-
forward fashion due to the presence of control variables ( )z in the
model constraints, i.e., (Eqs. (3) and 4). A mathematical pro-
gramming model must be solved for this purpose. Specifically, this
optimization problem can be expressed as

( )

( )

− ¯ =

¯ = ∈ ( )

∈
f
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d b
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. .

, , , 0, I. 6
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i

x z, J

If ≥P 0, then the given point in parameter space can be con-
sidered as feasible and the corresponding control values will be
denoted as z̄ throughout this paper. Notice that the aforemen-
tioned vector b can be either selected randomly or assigned de-
terministically and, also, the upper-level minimization calculation
is introduced primarily to avoid producing erroneous negative P
values that are associated with some of the feasible points near
boundaries of the feasible region.
3. Integrated computation procedure

By integrating several software tools, computation of the vo-
lumetric flexibility index requires sequential implementation of
five distinct steps: (1) placement of feasible proximity points with
random line search, (2) generation of simplexes using the Delau-
nay triangulation strategy, (3) removal of infeasible simplexes,
(4) calculation of total hypervolume, and (5) evaluation of volu-
metric flexibility index ( )FIv . A brief explanation of each step and
also an overall flowchart are provided in the sequel:

3.1. Random line search

Clearly a precise geometric characterization of the nonconvex
feasible region is the prerequisite of accurate FIv evaluation. Sev-
eral alternative strategies have already been developed for this
purpose based on the ideas of simplicial approximation (Goyal and
Ierapetritou, 2003), α-shape surface reconstruction (Banerjee and
Ierapetritou, 2005), auxiliary vector and subspace feasibility test
(Lai and Hui, 2008). Since, as mentioned before, these available
methods may not be satisfactory in certain applications, a random
line search algorithm has been developed in this work to place
feasible points at or near the boundaries of the feasible region in
the parameter space. Specifically, this search is realized by solving
a mathematical programming model described in the sequel.

Let us first assume that a feasibility check has already been
performed for a given design d̄ on a randomly generated vector b
to obtain z̄. A second mathematical program can then be for-
mulated accordingly after producing another random vector a, i.e.

( )

( )
( )

θ

θ

θ

¯ ¯ =

¯ ¯ = ∈

¯ ¯ + = ≥ ∈

= + + ∞ > > − ∞ ( )

∈
s
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t j
j

i

j j j

x, , J

where sj is the slack variable of inequality ∈j J and t is the
parametric variable for a straight line. If the optimal objective
value is smaller than a designated threshold value ε, i.e., ε<Q ,
then the corresponding vector(s) in the parameter space should be
regarded as feasible proximity point(s) of the boundaries.

For illustration convenience, let us denote the total number of
feasible proximity points targeted in a search and the maximum
number of lines allowed per feasible point as Npoint and Nline re-
spectively. Although it is permissible to generate more than one
line by pivoting at the same feasible point b, it is preferrable to set
Nline so as to maintain the maximum degree of randomness in the
search. Note also that, since b must be feasible, at least one point
on the line θ = +ta b should be feasible, i.e., when =t 0. As a
result, the vector a can be selected arbitrarily.

The corresponding search procedure can be outlined as
follows:

1. Let =n 0 and Θ = ∅.
2. Generate a random vector b within the parameter hypercube

according to Eq. (5). Perform feasibility check on b by solving
(Eqs. (3), (5), and 6).

3. If <P 0, then go to step 2. Otherwise, save b and z̄, and then go
the next step.

4. Let =k 0 and Ω = ∅.
5. Generate an additional random vector a and solve Eq. (7).
6. If ε≥Q , then go to step 5. Otherwise, incorporate all solutions

(i.e., the feasible proximity points) into the set Ω and go to the
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Fig. 1. Feasible region of motivating example.

Fig. 2. Feasible proximity points generated in the motivating example.
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Fig. 3. Delaunay triangulation scheme obtained from the proximity points in Fig. 2.
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next step.
7. Let = +k k 1. If ≤k Nline, go to step 5. Otherwise, go to the next

step.
8. Let Θ Θ Ω= ∪ and Ω= + ( )n n card , where Ω( )card denotes the

cardinality of set Ω. If ≤n Npoint, go to step 2. Otherwise, stop.

An obvious advantage of this search strategy is that at least two
proximity points can be generated with a single line. For a con-
ceptual understanding, let us consider a motivating example with
the following five inequality constraints:

θ θ

θ θ θ

θ θ

θ

θ θ

= − − ≤

= + − − ≤

= − ( − ) − ≤

= − ≤

= ( + ) − ≤ ( )
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Fig. 1 shows the corresponding feasible region and note that
there are two nonconvex constraints, i.e., f3 and f5. In the original
problem statement (Goyal and Ierapetritou, 2003), a nominal point
of θ θ( ) = ( − ), 2.5, 0N N
1 2 was adopted with expected deviations of

θ θ(Δ Δ ) = ( )+ −, 7.5, 7.51 1 and θ θ(Δ Δ ) = ( )+ −, 15, 152 2 . In this figure, a
single random line is drawn to show the possibility of getting
multiple solutions with the same a and b. The proposed search
algorithm was coded and implemented on MATLAB-GAMS plat-
form (Dirkse et al., 2014; Matlab, 2014; Rosenthal, 2014) to pro-
duce 1000 feasible proximity points with =N 1000point and
Nline¼1 (see Fig. 2). It can be observed that the boundaries of the
feasible region are well characterized and thus an accurate esti-
mate of its boundary may be obtained accordingly.

3.2. Delaunay triangulation

The Delaunay triangulation strategy has been widely adopted
for scientific computing in diverse applications. Published ex-
amples include particle collision detection (Yazdchi et al., 2009),
computer vision (Dinas and Banon, 2014), protein interaction
(Zhou and Yan, 2012) and particle tracking (Chen et al., 2014), etc.
While there are many other computer algorithms available, it is its
favorable geometric properties that make this particular one use-
ful in the present work. The constrained Delaunay triangulation
strategy can in fact be implemented in high dimensions without
any difficulties, as the algorithm is quite mature and has already
been embedded in commercial software (Barber et al., 1996; De-
launay triangulation, 2014). The 2-dimensional dataset presented
previously in Fig. 2 are again used here as an example for illus-
tration. The simplexes (triangles) shown in Fig. 3 were obtained by
direct implementation of the Delaunay procedure using the MA-
TLAB built-in function “delaunayn” (delaunayn, 2014). Note that
some of the simplexes are actually located outside the feasible
region.

3.3. Infeasible simplexes

For illustration convenience, let us assume that coordinate data
of the aforementioned proximity points in n-dimensional space
can be stored in a − −N nbyprox matrix X, and each row vector of X
represents one such point. The MATLAB function “delaunayn” ba-
sically generates a list of Nsimp simplexes in such a way that no
data points in X are located inside the circumsphere of any sim-
plex (delaunayn, 2014). This Delaunay triangulation list T is es-
sentially a − − +N nby 1simp array in which each row contains the
row indices of X for the +n 1 vertices of a simplex., i.e., simplex k
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Fig. 4. Enhanced triangulation scheme obtained from Fig. 3.
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in the triangulation scheme is uniquely associated with the kth
row of list T and its ith element ( = ⋯ )T i n0, 1, ,i

k is with row
vector Ti

k in X.

Consequently, the centroid θ̄k of simplex k can be calculated
using the simple formula (Johnson, 2007) given below:

∑θ̄ =
+ ( )=n

x
1

1 9

k

i

n

i
k

0

where, xi
k denotes row vector Ti

k in X , i.e., the coordinate vector for

vertex i of simplex k. Given a fixed design ( ¯ )d and a centroid θ̄k, the
mathematical programming model given in Eq. (6) can be solved
to determine the feasibility of the simplex k with the corre-

sponding centroid θ̄k. A simplex can be retained only when the
corresponding ≥P 0. Fig. 4 shows the enhanced triangulation
scheme obtained by removing the infeasible simplexes in Fig. 3.
Note that three types of numerical errors may arise from the
aforementioned triangulation and elimination procedures. The
first is originated from feasible regions not covered by the sim-
plexes, while the other two are associated with simplexes that can
be divided into multiple parts by one or more boundary. In the
latter two cases, a partially infeasible simplex may be either kept
or rejected depending on the test result of its centroid. To achieve
an acceptable level of accuracy in estimating the total hypervo-
lume of feasible region, a sufficient number of proximity points
should therefore be utilized and this number can be properly de-
termined with the heuristic rule developed later in Subsection 4.3.
Fig. 5. Effects of increasing proximity points in motivating example.
3.4. Hypervolume calculation

The hypervolume of simplex ( = ⋯ )k k N1, 2, , simp can be com-
puted in a straightforward fashion with the following formula
(Stein, 1966; Burkardt, 2014):

( ) ( ) ( )=
! − − − ( )

⎡
⎣⎢

⎤
⎦⎥V

n
x x x x x x

1
det ... 10

k k k T k k T
n
k k T

1 0 2 0 0

where, each column of the n-by-n matrix is the transpose of dif-
ference between two row vectors representing vertex i
( = ⋯ )i n1, 2, , and the reference vertex xk

0 respectively. The total
hypervolume of the feasible region Vfr can therefore be calculated
easily by summing those of all feasible simplexes. For the moti-
vating example, analytical integration can be performed and the
theoretical area of the feasible region can be determined to be
152.76 units. On the other hand, the total area of all triangles in
Fig. 3 can be found to be 165.93 units by making use of Eq. (10),
while that of the feasible region in Fig. 4 is 152.7442 units (which
is 99.99% of the theoretical value).

For the motivating example, the estimated “volume” is plotted
against the number of feasible proximity points (from 3 to 1000)
in Fig. 5. It can be observed that the proposed method under-
estimates the feasible volume initially until reaching ≈N 100point

and, thus, 102 appears to be a proper lower bound for the number
of feasible proximity points.

3.5. Flexibility measure

According to Lai and Hui (2008), the volumetric flexibility in-
dex FIv should be calculated according to the formula below:

=
( )

V
V

FI
11v

fr

ur

where, Vur is the hypercube volume bounded by the expected
upper and lower limits of uncertain process parameters. Thus, the
exact value of volumetric flexibility index for the motivating ex-
ample is

( ) ( )=
+ × +

=
( )

FI
152.76

7.5 7.5 15 15
0.34

12
v

Since this problem has already been solved in several pre-
vious studies, it is therefore necessary to first present a sum-
mary of all available results. The approximated area of feasible
region was found by Goyal and Ierapetritou (2003) with the
simplicial approximation approach to be 129.69 units (which is
only 84.90% of the theoretical value) and therefore the corre-
sponding estimate of FIv is 0.29. Using the α-shape surface
reconstruction algorithm, Banerjee and Ierapetritou (2005)
only reported the sampled feasible points without the result-
ing area. For comparison purpose, the α-shape surface re-
construction computation has been repeated in this study with
the built-in MATLAB function “alphaShape” (alphaShape, 2014)
on the basis of 3356 evenly distributed points and a critical
alpha radius of 0.1694 (criticalAlpha, 2014). The estimated area
in this case is 148.58 units (which is 97.26% of the theoretical
value) and, thus, the corresponding FIv is 0.33. Lai and Hui
(2008) also studied the same problem by using the auxiliary
vector approach with two alternative objectives, i.e., (1) max-
imizing the sum of lengths of the position vectors that re-
present the interception points and (2) maximizing the sum of
squares of the distances between interception points and a
reference point. The former yielded an area estimate of 148.03
units (96.90% of the theoretical value) and the corresponding
FIv is 0.33, while the latter produced an overestimated area of
155.75 units (101.96% of the theoretical value) and an



Fig. 6. Flowchart of overall procedure.
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optimistic flexibility index of 0.35. As mentioned before, the
total area of feasible simplexes in Fig. 4 was found to be
152.7442 (99.99% of the theoretical value) and, thus, the re-
sulting flexibility measure FIv (0.34) should be more accurate
than any of the aforementioned methods.
3.6. Integrated computation procedure

The aforementioned algorithms can be integrated into a single
procedure for evaluating the volumetric flexibility index, and this
procedure is concisely described with the flowchart given in Fig. 6.
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Fig. 8. Feasible proximity points generated for expanded feasible region.
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The optimization runs performed by GAMS are marked with
blocks enclosed by thick dark-grey lines in this figure, while the
computations carried out with MATLAB codes are placed in blocks
against light-grey background. Although this flowchart is self-
explanatory, its steps are still briefly described as follows for the
sake of illustration completeness:

(1) The first step is the random line search. On the MATLAB-GAMS
platform, the corresponding computations produce the data set Θ that
contains all required feasible proximity points; (2) The feasible
proximity points in Θ are then triangulated using MATLAB N-D De-
launay triangulation built-in function “delaunayn” in MATLAB to gen-
erate the triangulation list T ; (3) The centroid of every simplex in T is
checked for feasibility and the infeasible ones are deleted. The trian-
gulation list T is then updated accordingly; (4) The hypervolumes of all
simplexes in the updated list T are computed and summed to estimate
the hypervolume of feasible region; (5) The corresponding the volu-
metric flexibility index is finally evaluated according to its definition.
4. Case studies

The examples in this section were selected to demonstrate the
effectiveness of the proposed computation strategies in handling
disjoint, non-simply connected and high-dimensional feasible re-
gions. The aforementioned computation procedure was im-
plemented on a computer system with the following specifica-
tions: Acer Veriton P530 F2, 2x Intels Xeons CPU E5-2620
v2@2.10 GHz (12 cores), 64 GB RAM, Windows 10 64 bit, MATLAB
2015b, and GAMS 24.5.3 (August 2015). The default values of ε and
Nline for the line search were chosen to be 10�6 and 1 respectively.
In all cases reported below, the time needed for each MATLAB-
GAMS call was less than 0.001 second. For the 7D problem in
subsection 4.6, the elapsed time for triangulation was less than 2 h
and the entire computation process lasted less than 5 h.

4.1. Disjoint feasible region

To demonstrate the capability of the proposed approach in
evaluating disconnected feasible regions, let us consider the heat
exchanger network (HEN) in Fig. 7 (Grossmann and Floudas, 1987).
The original model formulation was obtained by eliminating the
state variables with the equality constraints, i.e.
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Q c in these constraints is the cooling load which has been
treated as a positive-valued control variable, while FH1 is the heat
capacity flow rate of hot stream H1 and it is regarded as the only
uncertain parameter in this problem. It is also assumed that the
uncertain parameter has a nominal value of FH

N
1¼1.4 kW/K and the

expected positive and negative deviations (i.e., Δ +FH1 and Δ −FH1) are
both set at 0.4 kW/K. In the space formed by both the control
variable and uncertain parameter, the expanded feasible region
defined by Eq. (13) actually consists of two disconnected domains
(Grossmann and Floudas, 1987). Note that its exact total area, i.e.,
3.15 units, can be determined by analytical integration. Note also
that the simplicial approximation approach requires a priori
identification of the nonconvex constraint(s), i.e., f1, that causes
the division of the feasible region. The total area of disjoint feasible
regions was estimated by Goyal and Ierapetritou (2003) to be 1.84
units, which is 58.41% of the actual value. Since in this work their
flexibility measure was defined differently, their index value is not
presented here for comparison. On the other hand, the proposed
search algorithm has also been implemented to characterize the
expanded feasible region mentioned above. A total of 1000 feasible
proximity points were generated by treating Q c as a pseudo-
parameter to mimic the feasible boundaries (see Fig. 8). The sim-
plexes shown in Fig. 9 were obtained by Delaunay triangulation
strategy and the corresponding total area is 3.14 units (99.68% of
the actual value).

Finally, it should be noted that the present problem is actually
1-D since there is only 1 uncertain parameter FH1. The actual fea-
sible region is just two separated line segments which can be
generated by projecting the expanded region onto FH1 axis. Spe-
cifically, from the intersection points of f1 and f4, one can easily
locate the upper limit of the segment on the left and the lower
limit on the right and their values are 1.118 and 1.651 respectively.
Therefore, the exact value of 1-D FIv is

= ( − ) + ( − ) = ( )FI
1.118 1 1.8 1.651

0.8
0.334 14v
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Fig. 9. Delaunay triangulation schemes obtained from Fig. 8: (a) Left; (b) Right.
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Fig. 10. Feasible region of 2D non-simply connected example.

Fig. 11. 103 feasible proximity points generated in 2D non-simply connected
example.
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Fig. 12. Delaunay triangulation scheme obtained from Fig. 11.
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Based on the data points generated from random hit and run
search (see Fig. 9), the first part spans the interval [1, 1.117] and the
second [1.652, 1.8]. Thus the corresponding value of FIv is

= ( − ) + ( − ) = ( )FI
1.117 1 1.8 1.652

0.8
0.331 15v

which corresponds to 99.10% of the actual FIv. This result shows
that the random line search algorithm produce a reliable high
accuracy prediction of the feasible region.
4.2. 2D non-simply connected feasible region

To show the effectiveness of the proposed approach in handling
the non-simply connected regions, let us revisit the motivating
example and introduce an additional constraint:

θ θ= − ( + ) − ( + ) + ≤ ( )f 5 5 2 0 166 1
2

2
2

Fig. 10 shows the corresponding feasible region. By performing
analytical integration, the exact area of this region can be de-
termined to be 146.48 units. Thus, the true value of volumetric
flexibility index should be
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Fig. 13. Left – Triangulation scheme constructed according to 102 randomly generated proximity points; Right – Partial triangulation scheme shown for a limited range of θz .

Fig. 14. Left – Triangulation scheme constructed according to 103 randomly generated proximity points; Right – Partial triangulation scheme shown for a limited range of θz .

Fig. 15. Left – Triangulation scheme constructed according to 104 randomly generated proximity points; Right – Partial triangulation scheme shown for a limited range of θz .

V.S.K. Adi et al. / Chemical Engineering Science 147 (2016) 137–149 145
( ) ( )=
+ × +

=
( )

FI
146.48

7.5 7.5 15 15
0.3255

17
v

By using the proposed search algorithm, the feasible regionwas
characterized with 1000 feasible proximity points (see Fig. 11) and
the corresponding triangulation scheme is given in Fig. 12. The
area of feasible region was found to be 146.46 (which is 99.99% of
the exact value). Thus the value of FIv is
( ) ( )=
+ × +

=
( )

FI
146.46

7.5 7.5 15 15
0.3255

18
v

From the above results, it can be observed that the proposed algo-
rithms can be easily implemented to produce accurate area estimates of
non-simply connected regions at least in two-dimensional problems.
On the other hand, although the simplicial approximation approach
proposed by Goyal and Ierapetritou (2003) is also capable of handling



Fig. 16. Triangulation scheme constructed according to 104 randomly generated
proximity points.

Fig. 17. 104 proximity points generated in 3D complicated feasible region.

Fig. 18. Triangulation scheme constructed according to 104 randomly generated
proximity points.
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such regions, it is still necessary to identify the special geometric fea-
tures of f3, f5, and f6 in advance and, also, to construct the simplicial
convex hull and outer convex polytope (Goyal and Ierapetritou, 2003).

For comparison purpose, the α-shape surface reconstruction
computation Banerjee and Ierapetritou (2005) has also been re-
peated on the basis of 3217 evenly distributed points. The feasible
area in this case is underestimated to be 141.23 units (which is
96.42% of the theoretical value) and, thus, the corresponding FIv is
0.31. Although the α-shape surface reconstruction method was
designed to handle the nonconvex and non-simply connected re-
gion, the estimation of its hypervolume is attainable only if a
suitable α-shape factor can be identified properly. Furthermore,
with more sampling points used (3217 points vs 1000 points), the
estimation accuracy is actually lower than that achieved with the
proposed method (96.42% vs 99.99% of the exact value).
Fig. 19. Feasible region obtained with α-shape surface reconstruction.
4.3. 3D non-simply connected nonconvex feasible region

To show the effects of increasing proximity points, let us next
consider a three-parameter feasible region bounded between a
cube, i.e.,
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and a sphere, i.e.,

θ θ θ= − ( − ) − ( − ) − ( − ) ≤ ( )f 1 1.5 1.5 1.5 0 20x y z7
2 2 2

where, θx, θy and θz are the uncertain parameters considered in the
present example. The nominal point was placed at
θ θ θ= = = 1.5x

N
y
N

z
N and the expected positive and negative devia-

tions in these uncertain parameters were chosen to be:
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The volume of this feasible region can be determined analyti-
cally to be 22.81 units, and thus the exact value of FIv is 0.36.

Using the auxiliary vector approach (Lai and Hui, 2008), the
spherical void inside the cube cannot be detected properly and,
thus, an erroneous volume of 27 units was obtained. Note that the
auxiliary vector approach calls for two objectives, i.e., (1) max-
imizing the sum of lengths of the position vectors that represent



Table 1
Computation results in higher-dimensional cases.

Case Auxiliary vector (Lai and
Hui, 2008)

Subspace feasibility test (Lai
and Hui, 2008)

Proposed (10 n

pointsa)
CPU time needed to implement the
proposed algorithm

Flow problem with five uncertain
parameters

Vfr 23.81 29.22 29.30 14 min
FIv 0.744 0.913 0.92

HEN problem with seven uncertain
parameters

Vfr 118.4 126.72 126.22 4 h 36 min
FIv 0.925 0.99 0.99

a n is chosen to be the dimension of the individual problem.
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the interception points and (2) maximizing the sum of squares of
the distances between interception points and a reference point.
The maximum length of the position vectors is undoubtedly the
corners of the cube, thus the sphere void is inevitably left un-
detected. If the other available methods, i.e., simplicial approx-
imation and α-shape surface reconstruction, are applied in this
case, the drawbacks described in the previous 2D example can also
be observed. The former calls for a priori knowledge of the geo-
metric features of the feasible region and also tedious steps to
construct the simplicial convex hull and outer convex polytope,
while the latter requires iterative tuning of the algorithm para-
meter but often yields lower accuracy.

By carrying out the proposed computation procedure, the fea-
sible region can be described accurately. To show the resolution
improvement achieved by introducing more proximity points, 102,
103 and 104 randomly generated points and their corresponding
triangulation schemes are plotted in Fig. 13–15, respectively. The
total volume of all simplexes in the most refined scheme in Fig. 15
has been calculated and used as the estimated volume of the
feasible region. This estimate for 104 feasible proximity points is
22.83 units, which is 100.09% of the theoretical value, and the
corresponding FIv (0.36) is essentially the same as that determined
analytically.

With fewer proximity points, i.e., 102 and 103 points, the vo-
lume of feasible region was estimated to be 18.53 units (81.24% of
the theoretical value) and 22.92 (100.39% of the theoretical value),
respectively. Note that, when compared with the results generated
with the auxiliary vector approach (Lai and Hui, 2008), the
boundaries of feasible region can be better characterized and the
corresponding volume more accurately estimated by following the
proposed computation procedure with 103 points (27 units vs
22.80 units). On the other hand, since it is obvious that 102 feasible
proximity points cannot cover the entire feasible region ade-
quately as shown in Fig. 13, the corresponding results are not
satisfactory.

Finally, it can be observed from the results obtained in this 3-D
problem and other extensive case studies that the feasible region
Fig. 20. Effects of increasing feasible proximity points in heat exchanger network
example.
can usually be better characterized with more proximity points
until reaching a saturation level. A heuristic rule can thus be de-
duced to facilitate proper selection of the number of feasible
proximity points, i.e., this number should at least be set at 10n

(where n is the dimension of parameter space) for rough estima-
tions and may be raised to +10n 1 if a higher accuracy is desired.
This suggested rule will also be tested in the subsequent examples.

For direct comparison with previous works, let us next consider
the following three-parameter system studied by Goyal and Ier-
apetritou (2003):
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where the center of the sphere in prior example is located in the
origin, i.e., (0, 0, 0). The nominal point was placed similarly at
θ θ θ= = = 1.5x

N
y
N

z
N and the expected positive and negative devia-

tions in the uncertain parameters were chosen to be:
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The volume of this region can be determined analytically to be
26.48 units, and thus the exact value of FIv is 0.41.

The volume of feasible region was originally estimated to be
25.88 units (97.73% of the theoretical value) by Goyal and Ierape-
tritou (2003) and thus a conservative FIv value of 0.40 was ob-
tained. On the other hand, Lai and Hui (2008) studied the same
problem and produced an even smaller volume estimate, i.e.,
25.26 units (95.39% of the theoretical value), with the auxiliary
vector approach and also a more conservative flexibility index
(0.39).

Using the proposed method, the feasible region can be char-
acterized with the 104 proximity points and the corresponding
triangulation schemes are plotted in Fig. 16. The total volume of all
simplexes has been calculated and used as the estimated volume
of the feasible region. This estimate for 104 proximity points is
26.47 units, which is 99.96% of the theoretical value, and the
corresponding FIv (0.41) is essentially the same as that determined
analytically. Note that, when compared with the results reported
in Goyal and Ierapetritou (2003) and Lai and Hui (2008), the
boundaries of feasible region can be better characterized and the
corresponding volume more accurately estimated by following the
proposed computation procedure.

4.4. 3D complicated feasible region

Let us consider a fictitious case when the feasible region is
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defined in a very complicated way as follows (Klaus, 2010):
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The feasible region is actually a complicated object called trefoil.
It will be very difficult to construct the simplicial convex hull and
outer convex polytope (Goyal and Ierapetritou, 2003) based on Eq.
(24). It will also be erroneous by auxiliary vector approach (Lai and
Hui, 2008) since the method is limited by the number of search
vectors available.

Using the proposed method, the feasible region can be char-
acterized with the 104 feasible proximity points and the corre-
sponding triangulation schemes are plotted in Figs. 17 and 18,
respectively. The volume of feasible region was found to be 1.54
and the value of FIv is

( ) ( ) ( )=
+ × + × +

=
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25
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Finally, the α-shape surface reconstruction operation (Banerjee
and Ierapetritou, 2005) has also been repeated on the basis of the
104 proximity points generated by the proposed search algorithm.
As shown in Fig. 19, this approach only yielded a poorly char-
acterized feasible region.

4.5. A heat exchanger network with 4 uncertain parameters

To further demonstrate the effects of increasing feasible
proximity points and the validity of the suggested heuristic rule,
let us consider the heat exchanger network (HEN) design problem
reported in Grossmann and Floudas (1987). The inequality con-
straints imposed in the original model are summarized below:
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where T1, T3, T5 and T8 are uncertain parameters which denote the
fluid temperatures at various locations in the network, and Q c is a
controllable load in the cooler. The nominal values of the above
four temperatures are chosen at 620 K, 388 K, 583 K, and 313 K
respectively in this example, while their expected positive and
negative deviations are all set to be 10 K. Since there are four
uncertain parameters in this example, the feasible region defined
by Eq. (26) cannot be actually visualized with a 4-D plot.

Notice first that Lai and Hui (2008) have already studied this
problem and produced the following results. Using the auxiliary
vectors, they mapped every uncertain parameter to a standard
interval of [ − + ]1, 1 and found that the volume estimate of the
normalized feasible region was 12.14 units and the corresponding
FIv was 0.76. It should be noted that the true volume can be cal-
culated by multiplying the scale factors, i.e., × =12.14 10 1214004

units. Using the subspace feasibility tests, they divided the 4-D
hypercube bounded by the expected upper and lower limits of
uncertain parameters into 10,000 equal-sized hypercubic sub-
spaces. The center of every subspace was then checked for feasi-
bility. The flexibility index was calculated according to the fol-
lowing formula:

≈
( )

N
N

FI
27v

fs

s

where, Nfs is the number of feasible subspaces and Ns is the total
number of subspaces (which is 10,000 in this example). Note that
this approach may require overwhelming computation resource
and may lead to over/underestimation since the feasibility test is
applied only to the center of each subspace. For the present ex-
ample, FIv was found to be 0.78.

The hypervolume of feasible region has also been estimated
repeatedly according to the proposed computation procedure with
different numbers of feasible proximity points. These estimates are
plotted in Fig. 20 for 103–105 points. It can be observed that the
estimated hypervolume starts to stabilize after increasing the
point number to a value higher than ×5 104. The hypervolume
obtained with ×5 104 and 105 points can be found to be 126623.13
and 126742.43 units, respectively, while the corresponding flex-
ibility indices in both cases are almost the same, i.e., 0.79. Finally,
note that the hypervolume at 104 points (122434.22 units) is in
fact quite close to the converged value and, thus, the corre-
sponding flexibility index (0.77) can be used as a rough estimate
for preliminary analysis.

4.6. Feasible regions in higher dimensions

To show the superior capability of the proposed strategy in
computing the hypervolumes of high-dimensional feasible re-
gions, the following two examples are presented in the sequel:

i. a flow problem with five uncertain parameters (Grossmann and
Floudas, 1987; Lai and Hui, 2008), and

ii. a HEN design problem with seven uncertain temperatures
(Grossmann and Floudas, 1987; Lai and Hui, 2008).

For the sake of brevity, only the final results obtained with two
available approaches, i.e., auxiliary vector and subspace feasibility
test, and also the proposed procedure are presented in Table 1.

From these results one can see that: (1) the auxiliary vector ap-
proach usually underestimates the hypervolume of feasible region
volume, (2) the subspace feasibility test is dependable but inefficient,
since all subspaces in the entire parameter hypercube have to be
checked exhaustively, and (3) the proposed method may be adopted
to produce accurate estimates of Vfr and FIv with reasonable com-
putation effort. Since the CPU times needed by the available methods
were not reported in literature, only the results obtained with the
proposed algorithm are presented here. The long computational time
in the second case was primarily due to the sequential steps per-
formed in each MATLAB-GAMS calls (see Fig. 6), where in most cases
each call only requires 0.001 s. If the steps in random line search,
Delaunay Triangulation, infeasible check, and hypervolume calcula-
tion can be done in parallel, the total computation time can be re-
duced significantly. Furthermore, as the hardware price goes down
continuously and parallel GPU computation becomes more
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competitive, it is anticipated that the computational burden in higher
dimensional problems can be alleviated gradually.
5. Conclusions

A new computation strategy is presented in this paper for
evaluating the volumetric flexibility index of high-dimensional
systems with enhanced accuracy. The random nature of line search
results in precise characterization of the feasible region without a
priori knowledge about its geometric properties. With Delaunay
triangulation and infeasibility checks on the resulting simplexes,
the hypervolumes of disjoint, non-simply connected and/or non-
convex regions can be computed accurately and efficiently. A
heuristic rule is also suggested to facilitate proper selection of the
number of feasible proximity points. The effectiveness of the
proposed computation strategy has also been clearly demon-
strated in a series of case studies. Note finally that valuable prac-
tical information can be extracted from the feasible proximity
points obtained from random line search. Each point can be as-
sociated with the neighboring condition of an active constraint or
system's bottleneck. Potential revamp measures may then be
adopted to relax the corresponding constraint so as to enhance
flexibility.
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