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A B S T R A C T   

Vapor-liquid equilibrium (VLE) modeling is one of the most essential tasks for rigorous estimations of thermo-
dynamic properties in chemical process design and analysis. To realize any commercially feasible carbon dioxide 
(CO2) capture scheme using a carefully chosen aqueous amine solution, the accurate model of CO2 solubility in 
this water-amine system plays a vital role. However, the experimental data of various mixtures of amine solvents 
are insufficient and expensive to acquire. In view of this problem, a novel joint incremental learning network 
(JILN) structure is proposed for modeling equilibrium solubility of CO2 in various bi-solvent aqueous amine 
mixtures. With the proposed method, the knowledge embedded in the well-trained mono-solvent models can be 
extracted and effectively transferred to their related multi-solvent models. By adopting the proposed modeling 
method, the numerical experimental results showed that the mean absolute percentage errors (MAPEs) for 
various bi-solvent models were 2.1–4.9%, which indicates a maximum of 68% reduction in prediction blunders if 
compared with their ANN counterparts.   

1. Introduction 

To address the pressing issue of global warming, a large number of 
carbon dioxide (CO2) capture schemes have been proposed in the past 
few decades to recover the massive carbon dioxide continuously emitted 
to the atmosphere by various human activities. For the industrial-scale 
post-combustion CO2 capture (PCC) applications, the chemical absorp-
tion using amine solutions is considered to be the most mature means to 
remove CO2 from the exhaust gas streams. However, the main drawback 
of this technology is its high energy consumption required for solvent 
regeneration. As a result, various improvements, i.e., process modifi-
cations and absorbent enhancements [1,2], have been proposed to 
facilitate energy reduction. In particular, numerous experimental 
studies on investigations of the organic amine solvents have been tried 
to improve the absorption/regeneration performances by blending 
various amine solvents [3]. 

To improve the efficiency of amine scrubbing process via novel and 
more effective blends, the previous studies obviously strived to identify 
amine solvents with the characteristics of high CO2 capture capacity, 
fast absorption rate and low regeneration energy. In order to rigorously 
analyze the effects of amine solutions on process systems, the vapor-
–liquid equilibrium (VLE) behaviors, viscosity, heat and mass transfer 

properties and reaction kinetic parameters should all be investigated 
thoroughly. The experiments on equilibrium solubility of CO2 in many 
different aqueous amine solutions is considered to be of critical impor-
tance since both transport properties and reaction kinetics rely primarily 
on the VLE behavior [4]. Several VLE models, e.g., Kent-Eisenberg 
model [5], Deshmukh-Mather model [6], electrolyte-NRTL model [7], 
and extended UNIQUAC model [8], have already been developed on 
theoretical basis to predict the thermodynamic properties of the sour 
gas-amine systems. However, these models are applicable only in nar-
row applicable temperature and concentration ranges [9]. 

Machine learning (ML) techniques have frequently been used for 
assisting the development of PCC technologies [10–12]. Various data- 
driven modeling techniques, e.g., artificial neural networks (ANNs), 
are commonly utilized for non-linear regression and classification. These 
powerful tools have already been applied to process-level modeling, 
analysis and optimization of PCC simulation studies and pilot plant 
testing [13–16]. On the other hand, the ANN models were also built to 
accurately predict the critical physiochemical properties, e.g., density, 
viscosity, surface tensions, enthalpy and CO2 equilibrium solubility, of 
various aqueous amine solutions [17–19]. Also, the equilibrium solu-
bility of CO2 in aqueous piperazine (PZ) solutions were modeled with 
ANNs, the adaptive neuro-fuzzy inference system (ANFIS) and the least- 

* Corresponding author. 
E-mail address: ctchang@mail.ncku.edu.tw (C.-T. Chang).  

Contents lists available at ScienceDirect 

Separation and Purification Technology 

journal homepage: www.elsevier.com/locate/seppur 

https://doi.org/10.1016/j.seppur.2023.125299 
Received 17 July 2023; Received in revised form 20 September 2023; Accepted 5 October 2023   

mailto:ctchang@mail.ncku.edu.tw
www.sciencedirect.com/science/journal/13835866
https://www.elsevier.com/locate/seppur
https://doi.org/10.1016/j.seppur.2023.125299
https://doi.org/10.1016/j.seppur.2023.125299
https://doi.org/10.1016/j.seppur.2023.125299


Separation and Purification Technology 330 (2024) 125299

2

squares support vector machine (LSSVM) models [20,21]. Similarly, the 
ANN model for CO2 solubility in aqueous 2-amino-2-methyl-1-propanol 
(AMP) was constructed and compared with the Deshmukh–Mather 
model [22]. In addition, other types of ML methods, such as the back- 
propagation neural network (BPNN), the radial basis function neural 
network (RBFNN), the general regression neural network (GRNN), the 
extreme gradient boosting (XGBoost) and the AdaBoost-decision tree 
(AdaBoost-DT) models, were also adopted to predict the CO2 solubility 
in aqueous solutions of various primary, secondary and tertiary amines 
[4,9,23–26]. 

Notice that the aforementioned works focused primarily on modeling 
CO2 solubility in single amine solutions instead of their blends. Several 
recent simulation researches and pilot studies showed that it is not only 
theoretically sound but practically feasible to enhance CO2 capture ef-
ficiencies by blending different amine solvents [27–30]. The unhindered 
primary and secondary amines possess fast absorption kinetics, while 
the hindered and tertiary ones may be selected due to their high loading 
capacities [31]. Therefore, accurate predictions of VLE behaviors of 
these mixtures seems to be very critical for developing advanced PCC 
technologies. Several researchers attempted to build semi-empirical 
models for CO2 solubility the blended amine solutions by extending 
the Kent-Eisenberg framework originally applied to the single amine 
cases [31–33], while some others worked on establishing rigorous ki-
netic models based on the zwitterion mechanism and the base-catalyzed 
mechanism for blends of primary, secondary and tertiary amines [34]. A 
few data-driven models of CO2 solubility in aqueous blends of alkanol-
amines or ionic liquids (ILs) have been proposed, while those with 
alkanolamines have already been constructed by using ANN represen-
tations [23,35–38]. For modeling CO2 solubility in aqueous amine 
mixtures, the apparent molecular weight was suggested to be selected as 
an input to characterize the changes in solution composition [36]. In 
addition to the above CO2 solubility models, the density, viscosity, 
surface tension and heat capacity of aqueous amine blends were also 
carried out in a number of studies by applying the ML tools [39–42]. For 
mathematically characterizing transport phenomena, some applied 
generic ML models to predict mass transfer coefficient in packed col-
umns, and it was recently suggested that the acidity dissociation coef-
ficient also plays an important role in predicting the properties of amines 
[43,44]. 

It should be noted that the above-mentioned data-driven black-box 
models are typically system dependent [45], which implies low reus-
ability. If the same approach is followed for property prediction in new 
solvent systems, the corresponding VLE models have to be built from 
scratch again. Although such case-by-case regression strategy is none-
theless still feasible in principle, the experimental data of aqueous amine 
blends may be scarce and, also, it is quite expensive to collect additional 
data via a large number of experiments. Especially, it should be noted 
that the above data-acquisition and modeling problems can become 
even more challenging when new solvents and their blends are under 
consideration [4,24]. In view of the aforementioned practical diffi-
culties, a novel joint incremental learning network (JILN) was devel-
oped in this work to facilitate flexible modeling of CO2 equilibrium 
solubility in a wide variety of multi-solvent aqueous amine solutions. 
With the proposed JILN configuration, the useful prior knowledge 
embedded in pre-trained VLE models of aqueous mono-amine solutions 
may be selectively fine-tuned, extracted and reused for joint incremental 
learning of the VLE models of their blends. This modeling strategy en-
ables effective reuse of the physically meaningful parameters of base 
models and also greatly enhances the prediction accuracy of the multi- 
solvent models. In this work, five extensively studied amine solvents, 
i.e., monoethanolamine (MEA), diethanolamine (DEA), methyl-
diethanolamine (MDEA), AMP and PZ, and their various bi-solvent 
aqueous blends were adopted as realistic examples to confirm the gen-
eral effectiveness of the proposed approach. 

2. Relevant background 

Although the black-box ML models have already been shown to be 
superior to their conventional counterparts [9], the domain knowledge 
extracted from either rigorous or semi-empirical theories is still impor-
tant for acquiring a deeper understanding of the thermochemical sys-
tems and thus facilitating more appropriate designs of ML models. 
Therefore, a brief review of theoretical background information is given 
below in this section. 

The mechanisms of CO2 absorption into aqueous amine solutions can 
be generally divided into the physical and chemical elements. The 
physical solubility may be characterized by the Henry’s law, as shown 
below in Eq. (1). 

PCO2 = HCO2 [CO2] (1)  

where PCO2 is the partial pressure of CO2; HCO2 is the Henry’s law con-
stant of CO2, which is temperature dependent; [CO2] is the concentration 
of dissolved CO2 in aqueous solutions. 

On the other hand, to be able to adequately describe the chemical 
solubility of CO2 in aqueous amines, the rigorous and semi-empirical 
models have both been widely studied and applied in the last several 
decades [32,46,47]. Since the key factor dominating the CO2 loading 
capacity of primary and secondary amines is the formation of carbamate 
[31,46], it is crucial to establish its rigorous chemical kinetic theory. For 
primary and secondary amines, the carbamate formation may be well 
characterized by the zwitterion mechanism suggested by Danckwerts 
[48]. The zwitterion mechanism was originally proposed by Caplow as a 
three-step kinetics [49], which was later simplified into a two-step 
framework consisting of both the formation and the deprotonation of 
zwitterion intermediate [46,50]. On the other hand, without free pro-
ton, the carbamate is not formed in the cases of tertiary amines. How-
ever, based on the base-catalyzed hydration mechanism proposed by 
Donaldson and Nguyen [51], the tertiary amines, which are weak bases 
in aqueous solutions, still promote the CO2 hydration process [4]. 

Aside from the elaborate kinetic mechanisms mentioned above, for 
equilibrium solubility modeling, it is common to develop semi-empirical 
system models that are governed by reversible and mutually indepen-
dent reactions [4,9,31–33]. More specifically, the aforementioned 
rigorous transient kinetic mechanisms may be replaced and covered by 
the apparent equilibrium reactions shown in Table 1 [32,33,52]. All 
amines undergo water ionization, bicarbonate formation, carbonate 
formation and amine protonation/deprotonation. On the other hand, as 
previously mentioned, the carbamate hydrolysis only takes place in 
aqueous solutions of primary or secondary amines, e.g., MEA, DEA and 
AMP [31,32]. Notice that PZ, which is a cyclic diamine, goes through 
two additional carbamate-related reactions, i.e., di-carbamate hydroly-
sis and carbamate protonation [53,54]. The apparent equilibrium con-
stants for the above reactions can then be described by the Kent- 
Eisenberg model [32,55]. Both the Henry’s law constant (HCO2 ) in Eq. 
(1) and the equilibrium constants (Ki) of the reactions mentioned above 
in Table 1 are nonlinear functions of temperature, and may be expressed 
in a general form as: 

lnKi = C1 +C2/T +C3lnT +C4T (2)  

where C1–C4 are the regression coefficients associated with a particular 
amine solution. These coefficients and also the Henry’s law constant can 
be found in literatures [56,57]. 

In addition to the chemical kinetics, three conservation equations, i. 
e., the amine balance, the carbon balance and the charge balance, should 
be included to impose both material balance and electro-neutrality of 
the amine–H2O–CO2 system models [9,32]. Notice that carbon balance, 
amine balance and charge balance equations for different alkanolamines 
are listed below in Table 2. Theoretically, the CO2 equilibrium solubility 
in aqueous amines may be determined by solving the Henry’s law in Eq. 
(1), the Kent-Eisenberg equilibrium constants in Table 1 and the carbon 
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and amine balances in Table 2 simultaneously [9,31,32]. Thus, it can be 
concluded that the CO2 equilibrium solubility in aqueous amine solution 
is closely related to the concentrations of carbon dioxide, alkanolamines 
and hydrogen ion. Consequently, the CO2 solubility in aqueous amine 
can be treated as a function of system temperature, initial concentration 
of amine and partial pressure of CO2 [9,25]. 

3. Neural network models 

3.1. Feedforward neural network 

Feedforward neural network (FNN), aka multi-layer perceptron 
(MLP), is one of the most widely used neural network models for engi-
neering applications. A typical fully-connected FNN structure used in 
this study is shown in Fig. 1, which allows the linear and/or non-linear 
activation calculations to be performed layer-wisely from input to 
output layer. The linear transformation is usually applied to the output 
layer in regression applications, while the non-linear ones, e.g., hyper-
bolic tangent or rectified linear unit (ReLU), are almost always selected 
at the hidden layers. The FNN structure can be expressed in a general-
ized mathematical format as follows: 

hi = ϕ(Wihi− 1 +bi) (3)  

where i is the index of the hidden layers, and Wi and bi are the weight 
matrix and bias vector in hidden layer i respectively. Clearly, one can see 
that the above equations are used for linearly transforming hidden-state 
vector hi− 1 from the previous layer i − 1, and, finally, ϕ in Eq. (3) is the 
nonlinear activating operator of each entity in any given vector. 

3.2. Incremental learning 

As a type of connectionist models, the FNN structures are highly 
flexible that can be configured to form almost infinite number of 
possible architectures. This special feature naturally leads to the 
development of ANN block-modularization techniques [58]. With high 
flexibility, various special network designs, e.g., random vector func-
tional link (RVFL), modular neural network (MNN) and progressive 
neural network (PNN), have been developed for engineering applica-
tions related to transfer and/or incremental learning [59–61]. 

Fig. 1. Feedforward neural network for modeling CO2 solubility.  

Table 1 
The semi-empirical model based on several apparent equilibrium reactions.  

No. Reactions Kent-Eisenberg constants Amines 

1 H2O ↔ H+ + OH− K1 = [H+][OH− ] All 
2 CO2 + H2O ↔ H+ + HCO−

3 K2 =
[H+]

[
HCO−

3
]

[CO2]

All 

3 HCO−
3 ↔ H+ + CO2−

3 K3 =
[H+]

[
CO2−

3
]

[
HCO−

3
]

All 

4 AmH+ ↔ Am + H+

K4 =
[Am][H+]

[AmH+]

All 

5 AmCOO− + H2O ↔ Am + HCO−
3 K5 =

[Am]
[
HCO−

3
]

[AmCOO− ]

MEA, DEA, AMP 

6 Am(COO− )2 + H+ ↔ AmCOO− + CO2 K6 =
[AmCOO− ][CO2][
Am(COO− )2

]
[H+]

PZ 

7 H+AmCOO− ↔ AmCOO− + H+

K7 =
[AmCOO− ][H+]

[H+AmCOO− ]

PZ  

Table 2 
The conservative equations for different aqueous amine systems.  

No. Conservation constraints Amines 

Carbon balance equations 
1 αCO2 [Am]0 = [CO2] +

[
HCO−

3
]
+
[
CO2−

3
]
+ [AmCOO− ] MEA, DEA, AMP 

2 αCO2 [Am]0 = [CO2] +
[
HCO−

3
]
+
[
CO2−

3
] MDEA 

3 αCO2 [Am]0 = [CO2] +
[
HCO−

3
]
+
[
CO2−

3
]
+ [AmCOO− ] + [H+AmCOO− ] + 2

[
Am(COO− )2

] PZ  

Amine balance equations 
4 [Am]0 = [Am] + [AmH+] + [AmCOO− ] MEA, DEA, AMP 
5 [Am]0 = [Am] + [AmH+] MDEA 
6 [Am]0 = [Am] + [AmH+] + [AmCOO− ] + [H+AmCOO− ] +

[
Am(COO− )2

]
PZ  

Charge balance equations 
7 [H+] + [AmH+] = [OH− ] +

[
HCO−

3
]
+ 2

[
CO2−

3
]
+ [AmCOO− ] MEA, DEA, AMP 

8 [H+] + [AmH+] = [OH− ] +
[
HCO−

3
]
+ 2

[
CO2−

3
] MDEA 

9 [H+] + [AmH+] = [OH− ] +
[
HCO−

3
]
+ 2

[
CO2−

3
]
+ [AmCOO− ] + 2

[
Am(COO− )2

] PZ  
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Numerous incremental learning (aka continual learning, lifelong 
learning or progressive learning) techniques have already been devel-
oped to effectively preserve and transfer the useful knowledge gained 
from previous training tasks by freezing, isolating and expanding a 
subset of designated network parameters (see Fig. 2) in order to ward off 
catastrophic interferences in model development stages [61–63]. These 
incremental learning techniques have been applied to process systems 
engineering (PSE) for mechanistic knowledge transfer and effective 
enhancement of modeling performance [64,65]. However, to our best 
knowledge, no published studies tried to explore the applicability of 
incremental learning for thermodynamic modeling. In addition, the at-
tempts to establish paradigms for complex model building via integra-
tion of incremental and joint learning techniques have rarely been made 
before. 

For modeling CO2 solubility in aqueous amine solutions and mixtures 
with ANNs, it is theoretically and practically feasible to just train them 
from scratch in a case-by-case manner. However, since the experimental 
data is expensive and also hard to come by, this brute-force approach is 
often impractical or even infeasible. To address these issues, the incre-
mental learning strategies seem to be attractive alternatives to build 
better models by reusing the weights and biases learnt from the previous 
training tasks in constructing the simpler models. 

4. Model development method 

As shown in Fig. 3, the proposed JILN modeling procedure consists of 
two stages, i.e., model pre-training and joint incremental learning. The 
base models of mono-solvent systems were constructed first, while the 
joint incremental learning process were next facilitated by combining 
these base models. To be more specific, the mono-solvent base models 
were trained by the dataset obtained from mono-solvent experiments, 
which are denoted in Fig. 3 as dataset A and dataset B. After building 
highly accurate and applicable mono-solvent models, denoted as model 
A and model B in this paper, they may be jointly expanded to 

accommodate the additional information for amine-blend systems. To 
solve the problem of distribution shifts among different datasets, a dis-
tribution shift model should be pre-trained by both mono-solvent and bi- 
solvent datasets and then attached to the input layer of the final model. 
Finally, the dataset obtained from bi-solvent experiments, denoted as 
dataset A/B, is then used to train the bi-solvent model, i.e., model A/B, 
in a supervised manner. The training details can be found in the 
following subsections. 

4.1. CO2 solubility models for single amines 

In this study, the multi-layer FNN models introduced in subsection 
3.1 were adopted for modeling the CO2 solubility in any aqueous amine 
solution. As mentioned in Section 2, both the Henry’s law constant and 
the equilibrium constants in Eq. (2) are nonlinear functions of temper-
ature. On the other hand, the CO2 solubility may be determined by these 
constants and the conservative equations in Table 2. Therefore, it may 
also be concluded that the CO2 solubility in various aqueous amine so-
lutions are functions of initial amine concentration and partial pressure 
of CO2. As a result, the input–output structure of CO2 solubility models 
may in general be expressed as [9,25]: 

αCO2 = f (T,Camine,PCO2 ) (4)  

where T is the temperature (K) of solution; Camine is the concentration (wt 
%) of amine; PCO2 is the partial pressure (kPa) of CO2. 

4.2. Distribution shifting layer 

Since the parameters of mono-solvent models were completely pre-
served during the joint incremental learning step, the problem of dis-
tribution shift in input variables (i.e., temperature, partial pressure of 
CO2 and concentration of amines) in the datasets of different single 
amine solutions and amine mixtures should be properly resolved to 
avoid negative transfer [66]. In the current study, this particular prob-
lem was overcome by simply passing the new data through a fully- 
connected layer that performs linear transformations, which may be 
mathematically expressed as: 

x(j) = W(j)
0 x+b(j)

0 (5)  

where x is the input vector of JILN models; W(j)
0 , b(j)

0 and x(j) represent 
respectively the weight matrix, the bias vector and the input vector 
connected to each mono-solvent model j. 

In practice, the linear layers were end-to-end pre-trained in a self- 
supervised manner. The testing R2 scores of these pre-trained layers 
were all over 0.999 or even approaching 1, which implies that the linear 
transformations were almost perfect. By adopting the so-called net-to- 

Fig. 3. The proposed modeling procedure for joint incremental learning.  

Fig. 2. Incremental learning using feedforward neural network.  
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net training techniques [67], as depicted in Fig. 4, the linear layer 
(colored in blue) was then attached to the combined JILN model be-
tween the input layer x and the mono-solvent sub-model j. This practice 
is believed to be effective to solve the problem of distribution shifts. 

4.3. Joint incremental learning network (JILN) 

The JILN model combines the concepts of both joint learning (i.e., by 
combining multiple models laterally) and incremental learning (i.e., by 
increasing the number of hidden neurons as depicted in Fig. 2). It can be 
seen that the multiple well pre-trained FNN models with previously- 
learnt knowledge, i.e., weights and biases, are preserved and incorpo-
rated in the new FNN structure by layer-wisely sharing the hierarchical 
hidden information with the expanded neurons, which are colored in red 
in Fig. 4. Notice that this information distribution goal may be realized 
by layer-wisely and laterally connecting the existing hidden layer(s) 
with an additional expanded one [62,63]. To be more specific, the 
matrix–vector multiplication in each hidden layer of the expanded block 
can be expressed as: 

h(k)
i = ϕ

(

W(k)
i h(k)

i− 1 +
∑

j
W(j:k)

i h(j)
i + b(k)

i

)

(6)  

where i is the index defined identically to that given in Eq. (3), while k 
represents the expanded network block (colored in red in Fig. 4) ob-
tained during the joint incremental learning steps. To model the CO2 
solubility in amine mixtures using the JILN method, the index j was used 
to distinguish the mono-solvent models (colored in blues in Fig. 4) which 
were pre-trained with the corresponding datasets. Notice that W(j:k)

i 
denotes the weight matrix of the lateral connections (expressed with 
symbol :) between layer i in block j and layer i in block k. The definition 
of the remaining matrix and vector are the same as those used for Eq. (3). 
Finally, ϕ is also the nonlinear activation operator. Based on the training 
procedure depicted in Fig. 3, the JILN model is then end-to-end trained 
on the basis of the dataset of amine mixtures in a supervised manner. 

After joint incremental learning, the input–output relationships for 
bi-solvent models may be expressed as Eq. (7), where the concentrations 
of the individual amines in the aqueous solution, i.e., CA,0 and CB,0, are 
simultaneously considered in order to adequately represent the feature 
contributions and learn the interactions between the amines involved. 
Such functional relationship is analogous to that based on the semi- 
empirical methods [31,32,54]. 

αCO2 = f
(
T,CA,0,CB,0,PCO2

)
(7)  

5. Case studies 

5.1. Experimental data of CO2 solubility 

5.1.1. Data acquisition 
Five extensively studied amine solvents with abundant experimental 

data were adopted to construct the mono-solvent models, i.e., base 
models for joint incremental learning. The CO2 solubility data in the 
amine solutions of MEA [5,8,56,68–72], DEA [73–75], MDEA 
[71,72,76–82], AMP [3,22,83–89] and PZ [90–95] were taken from 
published papers, and further details of these datasets, i.e., the ranges of 
temperature (◦C), the amine concentration (wt%), the partial pressure 
(kPa), the equilibrium solubility (mol CO2/mol amine) and the numbers 
of data, are also presented in Table 3. It can be observed that the ranges 
of the above parameters vary widely. 

To demonstrate the effectiveness of the proposed modeling 
approach, the CO2 solubility data of six bi-solvent aqueous amines, i.e., 
MEA/MDEA [68,72,96,97], DEA/MDEA [68,96,98–101], DEA/AMP 
[86,99,101–104], MDEA/AMP [31,87,105,106], MDEA/PZ [106–108] 
and AMP/PZ [84,88,109–111], were also gathered from the published 
works. The technical analyses of some of these bi-solvent blends, e.g., 
MEA/MDEA or MDEA/PZ, in pilot tests showed promising potentials, 
that is, the blended solutions may be more effective for energy-saving 
and absorption-enhancing purposes [29,30]. These collected VLE data-
sets are summarized in Table 4. 

Fig. 4. Joint incremental learning network for CO2 solubility in aqueous amine blends.  

Y.-D. Hsiao and C.-T. Chang                                                                                                                                                                                                                 



Separation and Purification Technology 330 (2024) 125299

6

5.1.2. Data preprocessing 
In machine learning applications, the first step is often rescaling the 

raw data so as to enhance training performance. In this study, the 
min–max normalization method (see Eq. (8) below) was adopted to map 
all input and output variables to interval [0,1] before the subsequent 
modeling steps. 

z =
x − min(x)

max(x) − min(x)
(8) 

The next usual practice adopted to process each rescaled dataset was 
to partition it into the modeling and testing subsets. The former was 
further separated into two groups for training and validation respec-
tively. The ratio of modeling to testing sample sizes was always set to be 

Fig. 5. Distributions of modeling and testing data in two-dimensional PCA spaces.  

Table 3 
Experimental data of CO2 solubility in the single amine solutions.  

Amine solutions T (◦C) Camine (wt%) PCO2 (kPa) αCO2 (mol/mol) Ndata 

MEA 25–170 6.1–60  0.1–19936 0.211–2.152 711 
DEA 0–205 5.3–84  0.689–6895 0.08–2.34 428 
MDEA 25–200 5–75  1.7–7565 0.1–1.833 382 
AMP 20–80 8.9–50  1.59–6987 0.126–1.126 359 
PZ 15–120 1–50  0.115–9560 0.073–2.61 210  

Table 4 
Experimental data of CO2 solubility in bi-solvent amine blends.  

Amine mixtures T (◦C) Camine (wt%) PCO2 (kPa) αCO2 (mol/mol) Ndata 

MEA/MDEA 25–180 10–24/6–25  0.724–19934 0.125–1.473 221 
DEA/MDEA 30–180 5.3–35.7/6–35.7  1.1–3845 0.038–1.119 297 
DEA/AMP 30–100 1.5–31.5/5–28.5  1.021–2908 0.262–1.2 227 
MDEA/AMP 25–80 11.8–25/8.9–25  0.11–6400 0.439–1.856 106 
MDEA/PZ 30–120 11.8–48/2–16.8  2.509–11880 0.2582–1.8714 277 
AMP/PZ 30–120 17.8–48/2–12.9  0.442–1464 0.131–1.029 426  
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3 in this study, while a fixed ratio of training to validation sample 
numbers was also set to be 3 for all cases. The training, validation and 
testing data were randomly sampled, and their distributions were then 
analyzed by the standard principal component analysis (PCA). The 
corresponding four- or five-dimensional feature spaces were reduced to 
two-dimensional ones for better visualizations. From Fig. 5, one can see 
that the distributions of data used respectively for modeling and testing 
are quite similar in the two-dimensional PCA spaces, which implied that 
the above-mentioned data partition strategies are suitable for model 
building and validation at least in the present studies. 

5.2. Network designs and training 

Both ANN and JILN models were built by open-source Keras software 
in Python environment, and a personal computer with Intel Core i7- 
7700 CPU 3.60 GHz was used to train all models. Since the number of 
parameters in these models was relatively small, every training session 
was completed in only a few minutes. The fully-connected FNNs with 1 
or 2 hidden layer(s) was adopted in all cases under consideration [112], 
and the nonlinear transformation performed by the hidden-state vectors 
was facilitated with the hyperbolic tangent function. Consequently, the 
Glorot-normal initializer was chosen for generating properly initialized 
weights and biases that are normally distributed around zero [113]. In 
this study, the number of trainable parameters was limited within the 
range of between 1 and 300. 5 to 40 nodes and 1 to 13 node(s) were thus 
chosen for building the 1- and 2-layer ANNs respectively, while at most 8 
nodes were adopted for fabricating the JILNs. The loss function adopted 
for backpropagations was the mean absolute error, and the Adam opti-
mizer was utilized to minimize this loss via updating network parame-
ters. To avoid overfitting during model training, the above loss function 
was modified by incorporating the ridge regularization penalty with a 
factor of 0.0001. 

To ensure convergence of the training process, the largest iteration 
number of the gradient descent was always set to be a very large number 
(50000) and a small learning rate of 0.001 in each optimization run, and 
an early-stopping mechanism was also put in place with a patience 
setting of 3000 iterations. From the computation results, one can 
observe that almost all training sessions stopped early at around 
15000–40000 iterations, which indicates the models gained no further 
improvement in the last 3000 updates. 

5.3. Evaluation of model performances 

To evaluate the effectiveness of the proposed method, the effect(s) of 
increasing the number of hidden neurons on the prediction capability of 
every trained and validated ANN model was thoroughly investigated. 
Notice that this extra neuron addition is in fact equivalent to introducing 
more neurons during the incremental learning stage. Four metrics, i.e., 
R-squared (R2), root mean squared error (RMSE), mean absolute error 
(MAE) and mean absolute percentage error (MAPE), were adopted to 
evaluate the differences between the predicted values (ŷ) and the real 
data (y). For the sake of completeness, the mathematical formula of 
these well-known metrics are duplicated below in Eqs. (9)–(12). 

R2 = 1 −
∑

n(ŷn − yn)
2

∑
n(y − yn)

2 (9)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
N
∑N

n=1
(ŷn − yn)

2

√

(10)  

MAE =
1
N

∑N

n=1
|ŷn − yn| (11)  

MAPE =
100%

N

∑N

n=1

⃒
⃒
⃒
⃒
ŷn − yn

yn

⃒
⃒
⃒
⃒ (12)  

5.4. Results and discussions 

5.4.1. Performances of mono-solvent models 
To implement the proposed JILN method, the first step is to make 

sure that the base models are able to capture the correct mechanistic 
knowledge in order to accurately predict the CO2 solubility in mono- 
solvent aqueous mixtures. Two hyper-parameters, i.e., the number of 
hidden layers and the number of hidden nodes (at each layer), were 
adjusted to search for the optimal base models. As mentioned earlier, the 
number of hidden layers was 1 or 2, and 1 to 8 hidden nodes can be 
included in each layer. The testing MAPEs of five mono-solvent models 
with different structures were given in Table 5. It can be seen that the 2- 
layer models generally outperformed their 1-layer counterparts, espe-
cially when the number of hidden nodes was greater than 3. From these 
testing results, it should be concluded that the optimal mono-solvent 
models most probably were 2-layer ANNs with 6–9 hidden nodes. 
Notice especially that the MAPEs of these optimal mono-solvent models 
were within the range of 3.6–7.7 %, which should be considered to be 

Table 5 
Testing MAPEs of mono-solvent models with different network structures.  

No. of nodes Mean absolute percentage error (MAPE) on testing sets 

MEA models DEA models MDEA models AMP models PZ models 

1-layer 2-layer 1-layer 2-layer 1-layer 2-layer 1-layer 2-layer 1-layer 2-layer 

1  14.611  14.911  33.543  33.556  44.464  39.874  31.203  22.035  21.349  20.550 
2  10.560  10.976  32.021  28.251  18.233  21.688  17.179  11.314  12.517  10.036 
3  9.956  7.619  18.120  23.062  16.938  10.306  30.885  16.162  9.996  4.454 
4  10.107  4.735  17.813  10.878  17.396  10.898  7.314  4.526  7.340  5.125 
5  7.111  4.519  13.729  14.510  16.277  9.326  17.584  6.184  7.275  4.205 
6  6.668  4.226  13.482  9.385  16.237  7.318  7.138  5.130  5.196  4.552 
7  6.413  3.573  14.386  8.453  17.061  9.889  19.114  3.712  7.738  3.799 
8  6.060  3.974  16.202  8.857  15.746  8.626  16.781  5.318  6.000  4.066 
9  6.638  4.011  13.251  7.703  13.918  8.878  8.164  5.220  5.241  4.502 
10  6.626  4.073  26.572  8.323  13.480  8.088  6.136  4.456  6.324  4.714  

Y.-D. Hsiao and C.-T. Chang                                                                                                                                                                                                                 



Separation and Purification Technology 330 (2024) 125299

8

extremely accurate if compared with the semi-empirical models 
[8,83,90,98] or the conventional ML models [21]. 

The modeling and testing parity plots of above-mentioned optimal 
models are also given in Fig. 6. It can be clearly observed that the pre-
diction errors in both cases were very small (signified with red squares 
and yellow points respectively), and that nearly all prediction errors 
were within 20 % (shown by the blue dash lines). The values of R2, 
RMSE, MAE and MAPE are also provided all the subplots of Fig. 6. Notice 
that (1) the red squares and yellow points both scattered near the di-
agonals, (2) most of the R2 scores were greater than 0.985, and (3) the 
RMSEs and MAEs were within the ranges of 0.023–0.046 mol/mol and 
0.017–0.034 mol/mol respectively. It should be also noted that the cross 
validations of RMSEs and MAEs are useful for identifying the outlier 
effects. Since the ranges of RMSEs and MAEs were very close to one 
another, the outlier effects on these metrics should be negligible. One 
can therefore conclude that the mechanistic knowledge of CO2 solubility 
in these mono-solvent systems can be correctly captured by the afore-
mentioned models. 

5.4.2. Performances of bi-solvent models 
In this study, the JILN models were compared with the 1-layer and 2- 

layer ANN counterparts. Notice that a large fraction of the model pa-
rameters used in JILNs, i.e., the ones embedded in the base models, were 
kept frozen during the joint incremental learning stage. Since the 
modeling approaches are not the same, it would be unfair to compare 

models on the basis of hidden neuron sizes. Consequently, they were 
compared on the basis of the unified standard of number of trainable 
parameters. 

The testing MAPEs for the six bi-solvent cases were given in Fig. 7. 
One can observe from Fig. 7 that the prediction errors of JILN models 
(shown in green diamonds) were much smaller than those of their ANN 
counterparts (shown in red triangles and blue points) when almost the 
same trainable parameter sizes were used for modeling in these three 
different cases. Notice that similar trends found in the mono-solvent 
cases can also be observed here, i.e., the 2-layer ANNs in general out-
performed their 1-layer counterparts. Although the trainable parameter 
sizes of JILN models were slightly greater than those of the conventional 
ANN counterparts if identical node numbers were adopted, these 
weights and biases in JILN can be more easily trained since most of them 
were guided by the hierarchical features of the base models with 
insightful mechanistic knowledge. From the testing results plotted in 
Fig. 7, it can be observed that the MAPEs of JILN models were close to or 
even smaller than 5 %, while those of 1- and 2-layer ANNs were much 
greater than the value of 5 %. It can be seen that the prediction per-
formances of conventional ANN models were restricted by the datasets 
of bi-solvent mixtures, where the testing MAPEs won’t significantly 
decrease even the trainable parameter sizes increase. On the other hand, 
partially driven by the inherent knowledge of the mono-solvent datasets, 
the JILN models were able to overcome such obstacles and produced 
more accurate predictions. It can thus be concluded that the knowledge 

Fig. 6. The prediction performances of the mono-solvent models.  
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Fig. 7. The testing results of bi-solvent models with different number of trainable parameters.  
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embedded in the mono-solvent base models are indeed useful and can 
produce positive effects on the knowledge transfer and incremental 
learning of bi-solvent models. 

The testing results of the optimal 2-layer ANN and JILN models were 
listed in Table 6 to facilitate further discussions. It can be seen that all 
testing MAPEs of JILN models lie within the interval [2.162 %, 4.913 
%], which is a much narrower range if compared with that of 2-layer 
ANN models, i.e., [4.047 %, 9.852 %]. This comparison implies a 
31–68 % reduction in prediction errors. Also, the MAPEs of JILN models 
were much smaller than those of the conventional empirical models 
reported in literatures [31,98,106]. Finally, notice that the testing 
RMSEs and MAEs of JILN models were within the ranges of 0.024–0.042 
mol/mol and 0.015–0.023 mol/mol respectively, which are much 
smaller than the corresponding values of 2-layer ANN model, i.e., 
0.034–0.072 mol/mol and 0.024–0.050 mol/mol. Based on the above 
analyses, it may be concluded that the JILN modeling approach is more 
effective and better suited to enhance the model performances if similar 
dataset sizes are available for thermodynamic property modeling. 

The parity plots of optimal JILN-based bi-solvent models are pre-
sented in Fig. 8. Since the modeling and testing data points were closely 
located along the diagonals, one can confidently deduce that the pre-
diction accuracies were at extremely high levels. More specifically, 
notice that the absolute prediction errors were almost all within 20 %. 
For further error analysis, the prediction results generated with the 
mono-solvent models are also given in Fig. 8 in the forms of pink plus 
and green cross symbols. Since the mono-solvent models are not able to 
take the concentration effects of the other amine in the mixture into 
consideration, some predicted values of the mono-solvent models are 
bound to significantly deviate from the experimental values of bi-solvent 

mixtures. Nevertheless, it should be pointed out that the predictions of 
mono-solvent models were already quite accurate because, theoretically 
speaking, the bi-solvent systems may be regarded as combinations of the 
corresponding mono-solvent ones with additional interactions. This 
observation indicates that the knowledge stored in the base models can 
be used as the foundation for meaningful extrapolation, and the 
expanded network blocks are certainly well guided by these laterally 
shared hierarchical features. 

6. Conclusions 

Accurate vapor–liquid equilibrium (VLE) models are crucial for 
reliable process simulation analyses and designs. In order to improve the 
CO2 capture processes, there is a real need to search for better amine 
solvents and/or blends to enhance absorption efficiency and reduce 
energy consumption. To address this issue, the CO2 solubility in aqueous 
amine solutions and mixtures have been accurately predicted with the 
proposed JILN model. Furthermore, this model can be very useful for 
further estimations of other important thermodynamic and transport 
properties. Although the machine learning (ML) techniques have been 
widely studied and used for VLE modeling, the traditional case-by-case 
training strategies are usually laborious and computationally intensive. 
Based on the concepts of joint and incremental learning, an alternative 
structure was proposed for the modeling of CO2 solubility in six different 
aqueous bi-amine mixtures. With this novel modeling approach, the 
useful knowledge embedded in the mono-solvent base models were 
proven by numerical experiments to be useful for the property learning 
tasks of multi-solvent mixtures. 

Table 6 
Testing results of ANN- and JILN-based bi-solvent models.  

Aqueous mixtures Optimal models Model testing results 

R2 RMSE MAE MAPE 

MEA/MDEA 9-node ANN  0.956  0.072  0.045  9.852 
7-node JILN  0.985  0.042  0.023  4.913  

DEA/MDEA 12-node ANN  0.981  0.036  0.024  5.428 
8-node JILN  0.992  0.026  0.015  3.354  

DEA/AMP 12-node ANN  0.911  0.054  0.039  7.396 
5-node JILN  0.945  0.041  0.027  4.779  

MDEA/AMP 8-node ANN  0.944  0.070  0.050  6.791 
3-node JILN  0.992  0.034  0.021  2.162  

MDEA/PZ 13-node ANN  0.987  0.037  0.025  4.047 
6-node JILN  0.995  0.024  0.017  2.382  

AMP/PZ 11-node ANN  0.971  0.036  0.026  5.348 
7-node JILN  0.983  0.028  0.019  3.665 

The number of nodes for JILN models refers to the expanded nodes rather than those of the base models. 
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Fig. 8. The performances of mono-solvent base models and bi-solvent JILN models tested by the datasets of amine mixtures.  
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