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a b s t r a c t

Amine scrubbing process is a promising approach for post-combustion CO2 capture. To 

analyze and improve the process performance, various rigorous mathematical models 

have already been adopted for simulation purpose. If these high-fidelity models are uti-

lized for more advanced applications, the required computational demand can be over-

whelming. This drawback inevitably motivates the use of data-based surrogate models to 

relieve computation effort. However, due to the inherent complexities of any given amine 

scrubbing process, the task of taking enough simulation data for building an accurate 

model is still computationally expensive. Therefore, in this paper, an innovative modeling 

procedure using artificial neural networks is proposed to effectively alleviate the afore-

mentioned data acquisition effort. To improve the data sampling efficiency while main-

taining model accuracy, several concepts used in process synthesis and progressive 

learning have been adapted in this work. The proposed surrogate model was constructed 

for the specific purposes of predicting the CO2 emission rate, the reboiler duty and the 

compression duty. In applying the proposed procedure, a large number of samples col-

lected from repeated standalone simulation runs of absorber process were used to pre- 

train the corresponding surrogate model, and this model was then further fine-tuned and 

expanded according to samples collected from relatively few plantwide simulation runs. 

By using this modeling strategy, both plantwide sampling size and total data collection 

time can be effectively reduced. More specifically, a comparison between the conventional 

method and the current model-building strategy showed that over 23–64% of data ac-

quisition time can be saved with the latter approach.

© 2023 Institution of Chemical Engineers. Published by Elsevier Ltd. All rights reserved. 

1. Introduction

Amine scrubbing processes have been extensively used in 
the hydrocarbon industry for sour gas treating (i.e., removal 
of H2S and CO2) to alleviate the environmental impacts (Hoff 
and Svendsen, 2013; Tikadar et al., 2020). Recently, due to 
concerns of increasing global warming, it is thus also re-
garded as an effective technology for post-combustion CO2 

capture (Hoff and Svendsen, 2013). However, the amine 
scrubbers are still suffered from practical issues such as 

intensive energy consumptions and high capital and opera-
tional costs. According to a previous analysis, the thermo-
dynamic irreversibility of CO2 capture via amine scrubbing is 
more than eight times of that of the CO2 compression train 
(Ferrara et al., 2017). Therefore, numerous studies have been 
carried out in the past aiming to enhance the commercial 
feasibility of amine scrubbing process (Li et al., 2016). Redu-
cing energy consumptions for solvent regeneration at the 
stripper section is widely considered to be one of the key 
issues for realizing financially feasible CO2 capture (Khalifa 
et al., 2022). Proper heat recovery is critical for improving the 
energy efficiency and thermodynamic reversibility of the 
amine scrubbers (Liang et al., 2015; Lin and Rochelle, 2016). 
Many studies have attempted to improve the CO2 capture 
process from chemical and/or engineering perspectives. The 
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use of various alternative amine solvents and/or blends is the 
most popular approach (N.Borhani and Wang (2019)). On the 
other hand, modification of process configurations should be 
considered as another promising strategy to achieve better 
energy efficiency. Various process intensification and mod-
ification designs have already been developed, investigated 
and compared. These designs include modifications of ab-
sorber and stripper columns, and intensifications of the cross 
heat exchanger (Ahn et al., 2013; Damartzis et al., 2016; 
Khalifa et al., 2022; Le Moullec et al., 2014; Wang et al., 2015).

Since all amine scrubbing processes, which are fabricated 
with various configurations and solvents, need to be opti-
mized at plant level to achieve the best CO2 removal effi-
ciency (Damartzis et al., 2016), it becomes necessary to 
construct reliable and accurate process models before fur-
ther pilot-plant studies and subsequent commercial scale-up 
operations. In addition, these models may also be useful for 
real-time analysis, optimization and control (Chen et al., 
2021). In amine scrubber design, it is well-known that a 
trade-off is always present between the energy consumption 
and the sour gas emission rates (Oh et al., 2016; Tikadar et al., 
2020). Therefore, to achieve an appropriate balance between 
these two goals, multi-objective optimization methods may 
be applied to provide the process engineers with various 
feasible choices for proper decision making (Tikadar et al., 
2020). The amine scrubbing process can of course be mod-
elled with commercial simulators, e.g. Aspen HYSYS, and 
these proprietary software products are typically supported 
by rigorous models and correlations to facilitate steady-state 
and dynamic simulations. The simulation-based models of 
amine scrubbing processes have been included in compli-
cated superstructure-based optimization problems for mini-
mizing energy consumption (Oh et al., 2016). Although 
successful results have been reported, the optimization tasks 
are still tedious and time consuming since rigorous simula-
tions of complex systems with highly non-linear constraints 
are computationally expensive. Lengthy convergence time is 
almost inevitable, while the numerical iteration algorithm 
could even fail (Alarie et al., 2021; Ochoa-Estopier et al., 2014). 
Therefore, there is undoubtedly another trade-off between 
model rigorousness and computation efficiency in the opti-
mization calculations of the amine scrubbing process 
(Nuchitprasittichai and Cremaschi, 2013). Consequently, the 
data-based surrogate model that accurately replicates the 
non-linear input-output relationships of any given process 
should be considered as a valuable alternative (Zhu 
et al., 2022).

In the field of process systems engineering, the data- 
based surrogate models have been widely adopted for sol-
ving the optimization problems (Kajero et al., 2017; McBride 
and Sundmacher, 2019). The complex physiochemical 
equations can be converted into simplified functions em-
bedded within a surrogate model. For example, the artificial 
neural networks (ANNs) can be thought of as mathematical 
models performing matrix-vector multiplications and non-
linear activations. To effectively train a data-driven model, 
large sets of diversely distributed simulation and/or experi-
mental data are indispensable. Thus, it is necessary to collect 
sufficient number of samples with the help of first-principle 
models and/or pilot experiments (Nuchitprasittichai and 
Cremaschi, 2013; Ochoa-Estopier et al., 2014). The collected 
data can then be used for model training, validation and 
testing. If the resulting surrogate model accurately correlates 

the nonlinear input-output relationships of the target pro-
cess system, its faster computation speeds can greatly re-
lieve the aforementioned computational efforts (Ochoa- 
Estopier et al., 2014). It should be noted from the outset that 
various nonlinear surrogate models of the amine scrubbing 
processes have already been developed for both operational 
and economic assessments (Chung and Lee, 2020). Due to the 
recent progress of deep learning tools, fabrication of ANN 
models has become a popular approach for nonlinear data- 
driven modeling. A wide variety of ANNs have been utilized 
for modeling many different chemical processes, such as 
multicomponent fractionation, crude oil distillation units, 
hydrocrackers, and chemical synthesis process (Henao and 
Maravelias, 2011; Ochoa-Estopier et al., 2013; Osuolale and 
Zhang, 2016; Song et al., 2020), etc. For the amine scrubbers, 
multilevel ANN-based surrogate models were rigorously de-
veloped, investigated and compared by a large number of 
researchers with rigorous simulation studies (Goldstein et al., 
2022; Henao and Maravelias, 2011). These ANN models have 
been used to correlate the key process features, such as the 
CO2 capture levels, the rich loading and the specific reboiler 
duty (Sipöcz et al., 2011). The ANN-based surrogate models 
were also developed for steady-state and dynamic operations 
using bootstrap aggregated neural networks and deep belief 
networks (Li et al., 2015; Li et al., 2018). Such ANNs can also 
be used to replace objective functions for process optimiza-
tion with various aqueous amine solvents or their blends 
(Nuchitprasittichai and Cremaschi, 2013).

Although the ANN-based surrogate models have been 
widely used to analyze and optimize the amine scrubbing 
processes, no published works were geared towards mod-
eling of such scrubbers with ingeniously modified config-
urations. It can be expected that the simulation runs of these 
complex amine scrubbing plants can be even more time 
consuming and computationally expensive. This short-
coming makes data acquisition difficult and should be con-
sidered as one of the bottleneck steps for surrogate modeling 
(Kajero et al., 2017; Nuchitprasittichai and Cremaschi, 2013). 
As a result, the manageable sampling size should be de-
termined a priori to reduce the total number of data acqui-
sition intervals, and at the same time maintain the model 
accuracy. It should be noted that very few studies identified 
this practical problem in the past (Nuchitprasittichai and 
Cremaschi, 2013; Ochoa-Estopier et al., 2014), and to our best 
knowledge, no published studies attempted to address the 
related issues via model-building methodology. For efficient 
development of surrogate models, the ANNs can be built for 
independently mimicking the behaviors of absorber and 
stripper with data collected from the corresponding standa-
lone simulation runs (Li et al., 2015; Sipöcz et al., 2011). 
However, not only the interactions among absorber, stripper 
and heat exchangers are clearly neglected in this approach, 
but also the key process mechanisms and implicit con-
straints may not be captured in the resulting models. Con-
sequently, the predictions of the independent ANNs are 
bound to be inaccurate and thus unfit for practical applica-
tions. On the other hand, although less efficient during the 
data collection stage, the surrogate model trained with 
samples collected from plantwide simulations should be able 
to circumvent the above drawbacks.

To build a plantwide model, the most straightforward 
approach is to train an ANN from scratch using the ex-
pensive plantwide data. Another intuitive strategy may be to 
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simply mimic the commercial simulators, where the ab-
sorber model is first pre-trained and then cascaded in series 
by a stripper model. These two models are then bridged by 
variables characterizing the rich solvent conditions. Finally, 
the resulting cascaded model can be end-to-end trained with 
the plantwide data. However, to provide the stripper model 
with accurate and comprehensive information of the rich 
solvent conditions, additional outputs (i.e., rich temperature, 
rich flowrate, rich MEA concentration and rich CO2 loading) 
should be explicitly learned and predicted by a relatively 
large absorber model. In addition, the prediction errors in 
these absorber model outputs may propagate to the stripper 
model and cause deterioration of the final learning out-
comes. Furthermore, the overall system network structure 
can become unnecessarily complex since this model must be 
equipped with the global inputs (e.g., lean loading) and the 
local inputs of two columns (e.g., column pressure). Also, 
independently representing the effects of global inputs to 
absorber and stripper models may even give rise to the un-
desired parameter redundancy issues (Cheng et al., 2015), 
and the useful knowledge in the absorber model cannot be 
extracted and reused in the plantwide modeling step.

An innovative method is proposed in this paper to 
drastically lower the required simulation effort for ANN- 
based surrogate modeling of the amine scrubbing plant. To 
efficiently construct the model, the proposed method aims 
to cut down the data acquisition time by combining the 
concepts of process synthesis and progressive learning 
(Fayek et al., 2020; Henao and Maravelias, 2011). Since the 
computation loading of standalone absorber simulation is 

much lighter than its plantwide counterparts, it’s prefer-
able to make use of standalone simulations for the purpose 
of saving at least a portion of the total data acquisition 
time. Therefore, in the proposed procedure, a large amount 
of cheap absorber samples were collected from the stan-
dalone simulations, while a relatively smaller number of 
expensive samples were gathered from the large-scale 
plantwide simulations. The former is utilized to pre-train 
the absorber model, while the latter is used for transfer and 
progressive learning so as to migrate and expand the ab-
sorber model. Firstly, the pre-trained absorber model is 
fine-tuned so as to adapt to the plantwide domains. Sec-
ondly, an additional network block is then laterally and 
also layer-wisely connected to the original network, and 
extra input and output variables were also attached to the 
new model architecture. Finally, these newly added para-
meters can be trained with the expensive plantwide sam-
ples, while the original parameters were fixed and 
untrained. With the aforementioned steps, the required 
sampling size collected from plantwide simulation runs is 
expected to be easily manageable, while the accuracy of 
resulting model should still be kept at very high level. The 
aforementioned explicit learning tasks of the rich solvent 
conditions would seem to be unnecessary and can easily be 
replaced by imposing the interior lateral connections for 
sharing useful hierarchical features between tasks and to 
greatly simplify the network structures. This method was 
verified in this study by building static surrogate models of 
the amine scrubbing process with various configurations to 
show its general effectiveness.

Fig. 1 – Process flow diagrams of various amine scrubbing CO2 capture plants: (a) typical process, (b) lean vapor 
recompression (LVR), (c) rich vapor recompression (RVR), (d) LRVR.
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2. Amine scrubbing process

2.1. Process descriptions

Amine scrubbing processes have long been adopted for sour 
gas sweetening in oil and gas industries to meet government 
regulations (Tikadar et al., 2020). To reduce carbon footprints, 
the same process is regarded as a promising means for post- 
combustion CO2 capture in various industrial sectors. As il-
lustrated in Fig. 1(a), the typical amine scrubber may be 
roughly divided into the absorbing and stripping sections. 
The former is usually operated at the atmospheric pressure 
(1 bar). The flue gas enters at the bottom of an absorption 
column and contacts counter-currently with the lean solvent 
introduced from the top. The CO2 content in the flue gas is 
chemically absorbed by amine solvent in the column, in 
which the complex heat and mass transfers and exothermic 
chemical reactions take place. The treated gas stream is 
vented from the overhead, while the rich solvent with high 
CO2 loading leaves from the bottom. The rich solvent is then 
regenerated in the pressurized stripper, where the captured 
CO2 is desorbed and vented from the top as a vapor product 
with high CO2 concentration. This vapor product is com-
pressed again to a much higher pressure and then dehy-
drated to facilitate transportation. The lean solvent leaving 
from the bottom is recycled back to the top of absorber. For 
better energy efficiency, a large amount of heat is recovered 
at the lean/rich cross heat exchanger (LRHX), where the 
sensible heat in hot lean solvent is recovered by the cold rich 
solvent. In addition, it is a common practice to install an 
auxiliary cooler at the downstream of LRHX for the purpose 
of manipulating the temperature of lean solvent entering at 
the top of the absorber. To ensure operability, several pumps 
are also deployed to overcome the pressure drops in various 
parts of the system, such as vertical elevations, vessel noz-
zles and tubes of exchangers. The stripper operation is en-
ergy intensive since a large amount of heat should be 
supplied by the low pressure steam to its reboiler, and the 
overhead vapor should be partially condensed for reflux to 
maintain the column operation. In fact, it is quite challenging 
for to commercialize the aforementioned process due to high 
capital and operating costs.

Various improved processes have been developed to 
minimize the steam consumption or the total equivalent 
work with sophisticated designs such as absorber inter-
cooling, exergetic integration and heat pumps (Le Moullec 
et al., 2014). The heat pumps in the improved design are ty-
pically realized by mechanical vapor recompression (MVR), 
where the vapor generated from flashing is recompressed to 
serve as an additional vapor source for the column. This 
practice results in less reboiling duty but more mechanical 
works (Li et al., 2022). To address this trade-off issue, nu-
merous studies have tried to optimize the operating pres-
sures to reduce the total equivalent work. For this reason, 
accurate surrogate models for these modified processes 
should also be made available so as to reduce the computa-
tion effort. However, to our best knowledge, no researches 
have tried to build these models systematically. In this paper, 
various modified configurations based on MVR techniques 
were studied, i.e., lean vapor recompression (LVR), rich vapor 
recompression (RVR) and lean/rich vapor recompression 
(LRVR). As shown in Fig. 1(b), (c) and (d), compared with the 
conventional process, additional drums, compressors and/or 
pumps are installed in these advanced configurations. The 

liquid streams with higher pressure from the bottom of ab-
sorber and/or stripper are flashed before feeding into their 
original downstream units. An amount of vapor is generated 
due the liquid flashing, and the vapor streams are then re-
compressed and injected to the bottom of the stripper to 
serve as an additional vapor source for column operation. 
Furthermore, the flashed rich solvent at lower temperature is 
pumped and fed to the top of the stripper, yielding in the 
reduction of condenser duty. The LVR using MEA solvent is 
the most studied MVR-based configurations, and it was re-
ported to be able to save reboiler duty by 12.8–26.8% (Khalifa 
et al., 2022).

2.2. Process simulations

In this study, the amine scrubbing process was simulated 
with Aspen HYSYS. The selected amine solvent is mono-
ethanolamine (MEA) with concentration around 30 wt% (Lin 
and Rochelle, 2016). Unlike the ideal process flow diagram 
depicted in Fig. 1, it should be noted that the water and MEA 
may escape from the systems with the vent gas and the CO2 

product. Hence, additional makeup streams are needed for 
maintaining water and MEA balances to ensure convergence. 
During simulation runs, the makeup quantities of their 
compositions were simultaneously calculated by a “Spread-
sheet” module. The Acid Gas-Chemical Solvents property 
package in Aspen HYSYS was selected for rigorous calcula-
tions. This package supports property estimations of various 
amine solvents and their blends, and these estimates are 
produced on the basis of the Electrolyte Non-Random Two- 
Liquid (eNRTL) model and the Peng-Robinson equation of 
state. (Dubois and Thomas, 2018).

Both absorber and stripper were simulated with column 
modules using rate-based method and the default para-
meters. The mixed flow model were selected to characterize 
the rate-based columns. For both columns, due to the need 
for faster convergence, the “Efficiency” rate-based model of 
Aspen HYSYS was adopted, where the conventional equili-
brium stages were assumed for the columns, and the rate- 
based efficiencies for CO2 were estimated to account for the 
non-equilibrium behaviors in each stage (Dubois and 
Thomas, 2018). The Modified HYSYS Inside-Out algorithm 
with adaptive damping factor was selected as the column 
solvers (Oh et al., 2016). To satisfy the requirement of degree 
of freedom for simulating the stripper column, the condenser 
temperature and lean loading (mole ratio of CO2 to MEA in 
the lean solvent) were chosen as the inputs to the simulator 
(Amrollahi et al., 2012), and the corresponding reboiler duty 
was then obtained through rigorous calculations. Also, the 
solvent circulation rate (mass flowrate of lean solvent) is 
another crucial parameter for plantwide simulations. The 
minimum approach temperature of lean/rich cross heat ex-
changer was set at 10 °C. For the process simulations of LVR 
and LRVR configurations, additional “Recycle” module should 
be attached to the outlet of recompressed lean vapor, which 
requires lengthier computation and longer data collection 
times.

2.3. Data acquisition

2.3.1. Automation of Aspen HYSYS
To generate enough samples for ANN-based surrogate 
modeling, HYSYS automation technique can be used to 
handle an extremely large number of repetitive steady-state 
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simulations. This task is accomplished by interactive ac-
cesses using external codes via the component object model 
(COM) protocol. In this study, the COM protocol is supported 
by the Python win32com package. To effectively extract the 
general information of amine scrubbing process, the multi-
variate operating conditions were pseudo-randomly sampled 
within the given design ranges using the popular Latin hy-
percube sampling (LHS) technique (Kajero et al., 2017). It is 
expected that process mechanisms may be correctly ex-
tracted by feeding randomly varied parametric combina-
tions, e.g., the flue gas temperature, flue gas flowrate, flue gas 
compositions, lean temperature, lean loading, solvent cir-
culation rate, stripper pressure, condenser temperature and 
flashed pressure, etc., to the simulator. The detailed ranges 
of these specifications are listed in Table 1. Parameters re-
lated to solvent flashing were only used in the simulation 
runs of MVR-based processes. To identify possible improve-
ments of the amine scrubbing processes on the basis of 
mathematical models, a wide operating range is required 
(Ahn et al., 2013). Therefore, as listed in Table 1, the design 
ranges of various parameters were deliberated enlarged in 
order to generate sufficiently general information for data- 
driven modeling. To satisfy material balances, the flue gas 
compositions sampled by the LHS technique were normal-
ized before feeding into the simulator. Critical stream prop-
erties of flue gas, lean solvent, rich solvent, vent gas and CO2 

product were recorded during simulation runs, and the op-
erating conditions and the design specifications of absorber, 
stripper and heat exchangers were also collected.

2.3.2. Data acquisition time
In this study, a computer with Intel Core i7–7700 CPU 
3.60 GHz was used for data acquisition from process simu-
lation results. During the data acquisition steps, the data 
collecting intervals were recorded to estimate the data ac-
quisition speeds, and the results may be further used for the 
evaluation of the efficiencies of modeling methods detailed 
in the following sections. The data acquisition times for 
collection of 1000 samples are shown in Fig. 2. It should be 
noted that the specifications generated by LHS technique for 
simulations may result in divergence (Ochoa-Estopier et al., 
2014), but the time intervals of such cases should still be 
counted. It can be clearly seen that the standalone 

simulation of absorber took the least amount of time, i.e., 3 h, 
to collect 1000 samples, while those of the other configura-
tions were at least 3–7 times longer. The simulation results of 
the typical and RVR processes are similar, and they both 
yield the similar data acquisition speeds. It took approxi-
mately 10 h to collect 1000 samples for these two cases. On 
the other hand, notice that much greater time spans are 
needed to collect enough samples for modeling the LVR and 
LRVR processes. Specifically, it took around 15 and 20 h to 
collect 1000 samples for the corresponding model building 
tasks. This due to the fact that the simulated LVR and LRVR 
processes are more complex than the others. The results 
given in Fig. 2 also once again indicates that it is necessary to 
upgrade frameworks in practical applications, e.g., optimi-
zation (Zhu et al., 2022), for improving the calculation effi-
ciency by incorporating with the surrogate models. In data 
acquisition stage for data-driven modeling, the sizes of 
plantwide datasets should therefore be properly determined. 
More specifically, the total data acquisition time should 
suppressed to an as-low-as-possible level (Nuchitprasittichai 
and Cremaschi, 2013).

3. Model building methodology

The proposed surrogate modeling procedure for amine 
scrubbing processes is introduced below. It can be observed 
from Fig. 3 that the complete process model is sequentially 
synthesized according to unit models. By following this ap-
proach, an innovative surrogate modeling procedure is pro-
posed in this study to effectively reduce the required number 
of samples via progressive learning. Generally speaking, this 
model-building procedure consists of three successive steps, 
i.e., (1) pre-training, (2) fine-tuning and (3) progressive 
learning through model expansion (Rusu et al., 2016). In the 
following sub-sections, the descriptions of the above steps 
are given in further details.

3.1. Pre-training of absorber model

Traditional rigorous simulation of the integrated absorber- 
exchanger-stripper system calls for extremely lengthy and 

Table 1 – Operating ranges of the CO2 capture process. 

Absorber

Operating pressure 1.0 bar
Flue gas temperature 40–80 °C
Flue gas mass flowrate 30–100 kg/h
Flue gas CO2 mole fraction 0.05–0.15
Lean solvent temperature 40–60 °C
Lean solvent mass flowrate 30–500 kg/h
Lean solvent MEA mass fraction 0.27–0.33
Lean solvent CO2 loading 0.05–0.40
Stripper
Operating pressure 1.5–3.0 bar
Condenser temperature 40–80 °C
Lean solvent CO2 loading 0.05–0.40
Lean flashed pressure* 0.3–2.7 bar
Rich flashed pressure* 0.3–0.9 bar
Cross heat exchanger
Minimum approach temperature 10 °C

*Parameters used only in MVR-based amine scrubbers.

Fig. 2 – The data acquisition time needed by carrying out 
rigorous simulation runs for various modified processes.
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iterative computation. Extra recycle loops may also be re-
quired if this process is modified to form one with an even 
more complicated configuration, e.g., LVR. Furthermore, if 
additional design specifications are imposed, e.g., 90% CO2 

removal rate, owing to the degree of freedom is saturated for 
simulations, repeated iterative adjustments would be re-
quired to reach the desired design targets. Consequently, the 
corresponding computation effort can be overwhelming. 
This and other computation issues obviously motivate the 
use of simpler surrogate models. However, the tedious task 
of data acquisition from first-principle models is still con-
sidered to be inevitable for the data-driven modeling ap-
proaches (Kajero et al., 2017; Ochoa-Estopier et al., 2014). 
Therefore, a novel model-building procedure has been de-
veloped in this work so as to shorten the data acquisition 
time while still resulted in the same or even more accurate 
predictions.

To facilitate faster convergence in simulating the amine 
scrubbing process, the plantwide flowsheet is first reduced to 
a standalone absorber (Alie et al., 2005). This practice cer-
tainly shorten the total computation time because of the fact 
that the interactions among different units in the given 
process via solvent recycling loops and LRHX are ignored 
completely. Since the standalone simulations are implicitly 
less constrained, the required total computation time should 
be much shorter and, naturally, the collection cost of the 
standalone samples is significantly cheaper. As mentioned 
before, the collected data from the standalone simulation are 
supposed to be utilized for supervised pre-training of ab-
sorber model. In this study, the multi-layer feedforward 
neural network (FNN) structures were adopted for ANN- 
based surrogate modeling. The mathematics of FNNs can be 
simply expressed in the following form:

=h W h( )i i i 1 (1) 

where hi and W i denote the hidden state vector and the 
weight matrix of layer i respectively, and is the linear or 
nonlinear activation function, e.g., sigmoid or hyperbolic 
tangent function. To mimic the input-output relationships of 
the rigorous models embedded in the process simulator, 
seven input variables, i.e., flue gas flowrate, flue gas tem-
perature, flue gas CO2 concentration, lean flowrate, lean 
temperature, lean MEA concentration and lean loading, have 
been selected for the surrogate model. On the other hand, the 
only output variable was chosen to be the CO2 emission rate, 
which is determined by the CO2 content in the gas stream 
vented from the absorber.

3.2. Fine-tuning of absorber model

From the practical perspective of process modeling, training 
models from scratch for each new tasks is tedious and in-
efficient. Therefore, transfer learning is an attractive tech-
nique to avoid such inefficiency. The core concept of transfer 
learning is to preserve the previously stored knowledge 
embedded in the source domain (i.e., the base models) and 
migrate the same information to the target domain (Pan and 
Yang, 2010). The useful knowledge stored in the base models 
is retained and transferred, while the invalid ones are up-
dated and/or discarded. More specifically, transfer learning 
aims to reuse the base models in a systematic way by judi-
ciously fine-tuning or preserving their weights and biases 
(Yosinski et al., 2014). With this strategy, it is expected that 
the required sampling size can be made smaller than that 
needed by the conventional methods. This data handling 
technique has been successfully applied to model various 
types of chemical processes, including multicomponent 
distillation column, non-isothermal continuous stirred tank 
reactor (CSTR), polymer injection molding, and steam 
cracking furnace (Bi et al., 2020; Chuang et al., 2018; Hsiao 
et al., 2021; Lu et al., 2009). These transfer learning-based 

Fig. 3 – (a) conceptual analogy of process synthesis and progressive modeling via model expansion and (b) proposed 
flowchart for surrogate modeling of amine scrubbers.
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methods were developed to overcome the common problem 
of insufficient data in the field of chemical process en-
gineering, and the main reason why transfer learning was 
successful in the above cases is that the high process simi-
larities between the source domains and the target domains 
(Lu et al., 2009).

Due to the high process similarity, the absorber behaviors 
in standalone and plantwide simulations are believed to be 
closely related (Alie et al., 2005). Therefore, it is reasonable to 
expect that the knowledge gained from the standalone do-
main would be useful and transferable to the plantwide do-
mains. However, there are still differences between the 
results obtained from standalone and plantwide simulations 
(Alie et al., 2005), which may be originated from the fact that 
the standalone simulation is not able to take unrecognizable 
implicit constraints related to solvent circulation into con-
sideration. Such constraints, e.g., the recycling lean solvent 
conditions and the water/MEA balance, etc., are utilized in 
plantwide simulations, and exert great influences on model 
convergence and process behaviors. Although the above 
differences may be subtle, they are nonetheless still un-
known in advance. As a result of these concerns based on the 
domain knowledge, it is considered in this study to be a 
conservative but reliable practice to fine-tune the model be-
fore the further training step in order to effectively capture 
the hidden information of implicit constraints. On the basis 
of this rationale, the second step of the proposed modeling 
procedure is designed to fine-tune the parameters of the pre- 
trained absorber model.

In this study, the transfer learning of pre-trained absorber 
model was accomplished by the parametric fine-tuning 
method (Yosinski et al., 2014). In particular, most of the 
network parameters of the pre-trained models are frozen, 
and only a small number of them were updated so as to 
adapt to the plantwide domain. More specifically, the para-
meters of the pre-trained absorber model were partially fine- 
tuned in a second supervised training procedure according to 
the plantwide data. Through this way, the network para-
meters stored in the pre-trained models may be preserved 
and transferred to construct the final models. From the 
technical aspect, with the above approach, the data-to- 
trainable parameter ratio can be effectively increased, and 
better model performances may be expected in comparison 
with the ones trained from scratch using same amount of 
samples. By following the aforementioned modeling strategy 
in the present study (Hsiao et al., 2021), the weights and 
biases of the first hidden layer and the output layers were 
updated in the standalone model, while the ones in the in-
termediate hidden layers are retained and transferred.

3.3. Progressive learning through model expansion

Progressive learning is an emerging field for deep learning, 
where the ANN architectures are progressively modified to 
integrate the new data with the help of previously gained 
knowledge (Fayek et al., 2020; Parisi et al., 2019). The idea of 
progressive learning is closely related to those of transfer 
learning, continual/lifelong learning and multi-task learning 
(Zhang and Yang, 2022). They are more advanced than their 
conventional counterparts, i.e., independent learning 
methods, where the latter train the models from scratch 
once new tasks are given (Fayek et al., 2020). The main tar-
gets of progressive learning are not only knowledge transfer 

but also sequential multi-task learning via expanding and/or 
pruning the architectures of the existing models. In the 
practical applications, there may exist several new process 
configurations (Yin et al., 2020), and the conventional 
transfer learning without modifying model architecture may 
not be applicable. Therefore, under such circumstances, the 
progressive learning approach should be adopted to expand 
the connections and parameters of the input layer, output 
layer and/or hidden layers. The model under construction 
may be able to progressively acquire the new system me-
chanisms on the basis of already available knowledge (Fayek 
et al., 2020; Parisi et al., 2019). Based on the ANN modular-
ization techniques (Terekhov et al., 2015), expandable deep 
neural networks have been adopted to solve this problem by 
laterally expanding the number of parameters in a layer-wise 
manner with or without pruning existing parameters (Rusu 
et al., 2016; Yoon et al., 2018), and the number of input and/or 
output variables can be also extended according to the new 
input-output relationships (Yin et al., 2020).

In the last step of the proposed method, the progressive 
deep learning technique was adopted to expand the archi-
tecture in every layer of the fine-tuned absorber model. To 
prevent catastrophic interferences (Fayek et al., 2020; Parisi 
et al., 2019), the parameters of the fine-tuned absorber model 
are retained during the progressive learning step, and the 
expanded parameters are merely laterally connected to the 
existing model without pruning its original architecture 
(Rusu et al., 2016; Terekhov et al., 2015). The layer-wise ma-
trix multiplications within the original network block still 
follows the Eq. (1), while the ones of the lateral connections 
between the original and expanded network blocks may be 
expressed as:
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where i, j and k are the indices of the hidden layers, the 
original block and the expanded block respectively. is the 

linear or nonlinear activation function. hi
j( ) and hi

k( ) denote 
the hidden state vectors of layer i of block j and k respec-

tively, while W i
k( ) is the weight matrix of layer i of block k, 

and U i
k j( : ) is the newly initialized weight matrix of the lateral 

connection (:) from layer i-1 of block j to layer i of block k 
(Fayek et al., 2020; Rusu et al., 2016).

Through this practice, the knowledge gained for pre-
dicting CO2 emission rate from the absorber model obtained 
in pre-training and fine-tuning steps may be effectively kept 
intact, and the useful inter-layer information may also be 
utilized to assist the learning of new process mechanisms. 
Practically, these modeling goals are realized by placing the 
lateral and layer-wise connections between a new block of 
FNN and the original ones to make proper use of the pre-
viously acquired knowledge. Furthermore, additional inputs 
(i.e., condenser temperature, stripper pressure and solvent 
flashed pressures) and two extra outputs (i.e., reboiler duty 
and mechanical vapor recompression duty) can also be at-
tached along with the model expansion, and are then fitted 
in a supervised-learning manner. It can be observed from 
Table 2 that the input-output structures of the four models 
under study are quite different. Notice especially that the 
number of input variables increases with the complexity of 
process. The selected input and output variables of the 
above-mentioned processes are specified in Table 3.
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4. Network architecture, training, and 
evaluation metrics

For comparison purpose, the baseline method was based on 
the independent learning approach, where the ANN models 
were directly trained from scratch with plantwide samples. 
The model predictions of the proposed method have been 
compared with those obtained with the baseline method. 
The hyper-parameters for various modeling tasks are listed 
in Table 2. After the preliminary cross validations by the 
collected datasets, two-layer FNNs were utilized for all cases 
in this study, and the maximum sample number was 1000. 
Each hidden layer in the absorber model accommodates 10 
neurons, and they are laterally connected by an additional 
network block with 3 or 10 neurons at each layer. For the 
baseline cases, two-layer FNNs with 10–20 hidden neurons 
were used. Since a large amount of parameters were frozen, 
the number of trainable parameters of the proposed model 
was much smaller than that of the baseline method. The 
activation function used in this study is the scaled ex-
ponential linear unit (SELU), while the linear function is used 
for the output layers. Since SELU was adopted for nonlinear 
activations, Lecun normal initializer was selected, and the 
data were preprocessed via standard-deviation normal-
ization. The learning rates for all training tasks were set to be 
0.001, and the Adam optimizer was selected to minimize the 
overall losses.

The main goal of the numerical experiments reported below 
is to cross validate the model prediction results obtained by the 
baseline and the proposed methods. For all modeling tasks, a 
total of 1000 samples were selected and fixed to serve as the 
testing sets, while the remaining samples were treated as the 
modeling sets. In each set, 70% samples were used for training 
and 30% for validation. In order to quantitatively evaluate the 
performances of various ANN models, two common statistical 
metrics were used, i.e., the R-squared (R2) score and the root- 
mean-square error (RMSE). The former provides the degree of 
linearity between predicted values and the ground truth, while 
the latter shows the deviations of predicted values from the 
real values. The formulas for calculating these metrics are 
given below in Eqs. (3) and (4).
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Modeling of the amine scrubbing process should be con-
sidered as a multi-output regression problem. Due to the 
heterogeneous physical meanings, it would be necessary to 
appropriately compare the averaged performances on dif-
ferent outputs, i.e., the CO2 emission rate, the reboiler duty 
and the MVR duty. Therefore, in this study, the averaged 
mean squared error (MSE) of normalized data was adopted to 
compare the overall performances of different models (Xu 
et al., 2020). The formula for averaged MSE is given in Eq. (5), 
where M denotes the number of output variables.
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5. Results and discussions

5.1. Pre-training and fine-tuning of absorber model

Fig. 4 shows the testing results of the pre-trained absorber 
models obtained with various different datasets. It can be 
clearly seen that the absorber model pre-trained by 750 
samples may be able to accurately predict the CO2 emission 
rates in various scenarios, where the R2 scores were around 
0.99. This is due to the fact that the absorber configurations 
under study were highly similar (Alie et al., 2005). In other 
words, Fig. 4 indicates that the proposed absorber model was 
able to accurately predict the CO2 emission rate with a fixed 
number of input features regardless of the modifications 
introduced into the stripper section. Therefore, the standa-
lone absorber model may be easily portable during the later 
fine-tuning and progressive learning steps. This practice 
guarantees the model quality for predicting the CO2 emission 
rates. In this study, the absorber model pre-trained with 750 
samples was selected as the base model for the subsequent 
modeling steps. In the data acquisition stage, only 2.310 h 
were needed to collect 750 absorber samples with standalone 
simulation, which is only around 12–23% of the time spent 
for the plantwide simulations. As given in Figs. 5–8, the 
prediction performance of absorber model may be further 
enhanced in the fine-tuning step. With only 400 new plant-
wide data used for fine-tuning, 1.6–6.5% of the prediction 
errors were effectively eliminated. Such improvements are 
quite significant, especially under the condition that the in-
itial accuracies were already at extremely high levels.

Table 2 – The hyper-parameters for surrogate modeling of various amine scrubbers. 

Hyper-parameters Typical LVR RVR LRVR

Number of input variables 9 10 10 11
Number of output variables 2 3 3 3
Maximum number of the modeling samples 1000 1000 1000 1000
The baseline method
Number of hidden layers 2 2 2 2
Number of hidden neurons 10 15 15 20
Number of parameters 232 453 453 723
The proposed method
Number of hidden layers 2 2 2 2
Number of hidden neurons 10 + 3 10 + 10 10 + 10 10 + 10
Number of parameters* 86 362 362 372

*The number of trainable parameters at the progressive learning stage.
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Table 3 – Input-output structures of various surrogate models. 

Models Absorber Typical LVR RVR LRVR

Input variables
Flue gas temperature ⃝ ⃝ ⃝ ⃝ ⃝
Flue gas mass flowrate ⃝ ⃝ ⃝ ⃝ ⃝
Flue gas CO2 mole fraction ⃝ ⃝ ⃝ ⃝ ⃝
Lean solvent temperature ⃝ ⃝ ⃝ ⃝ ⃝
Lean solvent mass flowrate ⃝ ⃝ ⃝ ⃝ ⃝
Lean solvent MEA mass fraction ⃝ ⃝ ⃝ ⃝ ⃝
Lean solvent CO2 loading ⃝ ⃝ ⃝ ⃝ ⃝
Condenser temperature ⃝ ⃝ ⃝ ⃝
Stripper pressure ⃝ ⃝ ⃝ ⃝
Lean solvent flashed pressure ⃝ ⃝
Rich solvent flashed pressure ⃝ ⃝
Output variables
CO2 emission rate ⃝ ⃝ ⃝ ⃝ ⃝
Reboiler duty ⃝ ⃝ ⃝ ⃝
Vapor recompression duty ⃝ ⃝ ⃝

Fig. 4 – Testing results of pre-trained absorber model with 
different datasets.

Fig. 5 – Testing results of surrogate model of typical 
process.

Fig. 6 – Testing results of surrogate model of LVR process. 

Fig. 7 – Testing results of surrogate model of RVR process. 
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5.2. Surrogate models of various processes

5.2.1. Surrogate models of typical process
The testing results of surrogate models of the typical process 
constructed using different methods are given in Fig. 5. 
These models were tested by 1000 validation samples which 
have not been used in the training steps. It can be clearly 
seen that the proposed method outperforms the baseline 
method. The prediction accuracies of both CO2 emission rate 
and reboiler duty achieved by the proposed models were 
relatively higher than those of their baseline counterparts. 
When only 250 samples were used, the testing R2 scores of 
the proposed model were around 0.99, while the ones of the 
baseline model were around 0.92–0.94. Although the testing 
R2 scores of the baseline models can be enhanced sig-
nificantly to around 0.98 when 500–600 samples were avail-
able, the testing R2 scores of the proposed models were 
meanwhile greater than 0.99. If it is desired to achieve testing 
R2 score approaching 0.99 with the baseline method, 1000 
modeling samples (or more) may have to be secured, while 
only 350 samples were enough via the suggested procedure. 
The above observations indicate over 64% of data acquisition 
time was reduced. Moreover, it can be noticed that the 
testing performances of the proposed models were much 
more stable than their conventional counterparts.

5.2.2. Surrogate models of LVR process
The testing results of LVR models can be found in Fig. 6. The 
learning task of each MVR process was more difficult than 
that of the typical process due to an additional output, i.e., 
the compression duty. For the proposed models, the testing 
R2 scores on the CO2 emission rate were stably greater than 
0.99 regardless of the number of modeling samples, while the 
ones of the baseline models reached 0.99 only when 900–1000 
samples were available. On the other hand, for the reboiler 
duty and the LVR duty, the testing performances of proposed 
models were enhanced much more noticeably if compared 
with their baseline counterparts. When 550 samples were 
available, the prediction accuracy of the proposed model was 
similar to that of the baseline model trained with 1000 
samples, which implies that over 25% of data acquisition 
time can be reduced by using the suggested method. If the 

number modeling samples was increased greater than 600, 
the proposed models were clearly superior, especially the 
predictions of the reboiler duty were much more accurate 
than those of the baseline models.

5.2.3. Surrogate models of RVR process
In the case of RVR process, the proposed models also per-
formed better if same amount of plantwide samples were 
used for modeling. Similar trends in prediction results of 
typical and LVR processes, the testing R2 scores of the pro-
posed models were again higher even when the number of 
modeling samples was reduced to around 400. It can be ob-
served that the proposed model trained with 550 samples 
was able to perform better than the baseline model trained 
with 1000 samples, where the values of averaged MSE were 
approximately 0.015 and 0.019 respectively. For the proposed 
model trained with 550 samples, the testing RMSEs of the 
CO2 emission rate, the reboiler duty and the RVR duty were 
0.237 kg/h, 1.867 kW and 0.041 kW respectively, while those 
for the baseline model trained with same number of samples 
were 0.395 kg/h, 2.524 kW and 0.053 kW respectively. These 
indicators represent 40%, 26% and 23% reductions in the 
corresponding prediction errors. Furthermore, they imply 
that over 24% of data acquisition time was reduced by using 
the proposed methodology.

5.2.4. Surrogate models of LRVR process
The model predictions of the LRVR process are given in Fig. 8. 
It can be observed that the steps of absorber pre-training and 
fine-tuning had positive effects on the enhancement of 
model performances, especially when the number of mod-
eling samples were relatively few. When only 300 samples 
were available, the testing R2 scores of the CO2 emission rate, 
the reboiler duty and the LRVR duty were estimated to be 
0.990, 0.877 and 0.914 respectively, and the corresponding 
RMSEs were 0.194 kg/h, 3.612 kW and 0.161 kW respectively. 
Notice that these results were much better than those of the 
baseline model, where the RMSE values were respectively 
0.536 kg/h, 5.891 kW and 0.216 kW. By comparing the above 
two sets of indicators, it can be deduced that approximately 
63.8%, 38.7% and 25.5% of prediction errors were eliminated. 
The proposed model trained with 750 samples was able to 
produce predictions with accuracy similar to that accom-
plished by a baseline model trained with 1000 samples. The 
corresponding averaged MSEs were 25.1 × 10−3 and 28.5 × 10−3 

respectively, and these results imply that around 23.1% of 
data acquisition time was saved.

5.3. Further discussions

5.3.1. Enhancement of model accuracy
In this subsection, the effectiveness of the proposed method 
on model accuracy enhancement is demonstrated. From the 
results given previously in Section 5.2, it can be observed that 
the proposed models possess the properties of higher start, 
higher slope and higher asymptote if compared with the 
corresponding baseline models trained with same number of 
samples. Consequently, one can intuitively deduce that ap-
plication of the proposed method results in higher accuracy 
than the baseline method. However, notice that it is neces-
sary for the proposed models to be pre-trained, which incurs 
penalty on data acquisition time (i.e., 2.310 h). Thus, it would 
be unfair to compare the models trained with same number 
of plantwide samples but created with different methods. 

Fig. 8 – Testing results of surrogate model of LRVR process. 
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Therefore, rather than models trained with the same number 
of plantwide samples, models trained with similar total data 
acquisition time were adopted for comparison from a dif-
ferent angle.

As shown in the Table 4, with similar data acquisition 
times, the proposed models had superior performances over 
their baseline counterparts. 14–40% reductions in the aver-
aged MSEs was achieved for different amine scrubbing pro-
cesses. It can also be seen that the complexities of process 
configurations may affect the model performances. With the 
simplest flowsheet, the averaged MSE of typical process can 
be reduced 39.6%. On the other hand, the proposed models of 
more complex processes, e.g., LVR and LRVR, both realized 
relatively small reductions on the averaged MSE values. On 
the other hand, the RMSE values achieved with the proposed 
models for various output variables, i.e., CO2 emission rate, 
reboiler duty and MVR duty, were also equal to or even better 
than those of the corresponding baseline models. From the 
above results, it can be concluded that the proposed model- 
building strategy can be regarded as a novel and effective 
tool for enhancing the model performances if similar com-
putation efforts are desired for the modeling tasks.

5.3.2. Reduction of data acquisition time
As mentioned before, the main purpose of this study is to 
reduce the data acquisition time for surrogate modeling of 
the amine scrubbing process by following the proposed 
modeling procedure. Therefore, in this subsection, in con-
trast to the previous one, models with similar prediction 
accuracies were compared. As shown in Table 5, the baseline 
models were trained with a sample size of 1000, while the 
proposed models were trained with 350–750 plantwide 

samples according to different target systems. Pre-trained by 
750 absorber samples, the proposed models were able to 
obtain target accuracies based on smaller numbers of mod-
eling samples if compared with their baseline counterparts. 
Take the LVR case as an example, it only took 550 samples to 
construct a model with an averaged MSE around 0.01 by the 
proposed method, while 1000 samples are needed for the 
conventional approach to reach similar performance. This 
finding indicates around 25% of data acquisition time were 
reduced. For the case of the typical process, 64% of data ac-
quisition time was eliminated, while 23–25% were reduced 
for the MVR cases.

6. Conclusions

The amine scrubbing processes are regarded as attractive 
options for post-combustion CO2 capture. However, since 
rigorous simulation of this complex processes could result in 
computation inefficiency for more advanced applications 
(such as optimization), the use of surrogate models become 
attractive in such scenarios. However, for the data-based 
modeling methods, it is inevitable to take an extremely large 
amount of time for data acquisition (Kajero et al., 2017). In 
this study, an innovative surrogate modeling strategy, which 
makes use of the concepts of process synthesis and pro-
gressive learning, is proposed to reduce the data acquisition 
time and also enhance the model performances. In this 
proposed method, the surrogate models were first pre- 
trained and fine-tuned with absorber samples collected from 
standalone simulations, and the models were then succes-
sively expanded to accommodate the knowledge for in-
ferencing the output variables related to the stripper 

Table 4 – Model performances with similar data acquisition times. 

Process Models (No. of 
samples)

Time 
(hour)

RMSEs Averaged MSE (normalized)

CO2 emission rate 
(kg/h)

Reboiler 
duty (kW)

MVR 
duty (kW)

Typical Baseline (1000) 10.048 0.192 0.699 – 6.47 × 10−3 -39.6%
Proposed (750) 9.906 0.149 0.545 – 3.91 × 10−3

LVR Baseline (1000) 14.384 0.181 1.008 0.038 9.62 × 10−3 -14.4%
Proposed (800) 14.005 0.161 0.935 0.036 8.23 × 10−3

RVR Baseline (1000) 10.737 0.254 2.000 0.054 19.20 × 10−3 -27.0%
Proposed (800) 10.672 0.207 1.890 0.032 14.01 × 10−3

LRVR Baseline (1000) 19.264 0.204 2.056 0.085 25.09 × 10−3 -20.9%
Proposed (850) 19.025 0.173 1.690 0.086 19.85 × 10−3

Table 5 – Total data acquisition times with similar model performances. 

Methods Typical LVR RVR LRVR

Number of plantwide samples Baseline 1000 1000 1000 1000
Proposed 350 550 550 750

RMSEs CO2 emission rate (kg/h) Baseline 0.192 0.181 0.254 0.204
Proposed 0.170 0.162 0.237 0.181

Reboiler duty (kW) Baseline 0.699 1.008 2.000 2.056
Proposed 0.712 1.141 1.869 2.013

MVR duty (kW) Baseline – 0.038 0.054 0.085
Proposed – 0.040 0.041 0.107

Averaged mean squared error (normalized) Baseline 6.47 × 10−3 9.62 × 10−3 19.20 × 10−3 25.09 × 10−3

Proposed 5.72 × 10−3 10.81 × 10−3 15.45 × 10−3 28.54 × 10−3

Total data acquisition time (hr) Baseline 10.048 14.384 10.737 19.264
Proposed 3.613 10.777 8.115 14.832

-64.0% -25.1% -24.4% -23.1%
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sections. These surrogate models were constructed to predict 
the CO2 emission rate, the reboiler duty and the mechanical 
compression duty. To achieve the designated degree of pre-
diction accuracies, the results obtained in extensive case 
studies show that 25–65% of plantwide sampling sizes and 
23–64% of data acquisition time may be reduced by using the 
proposed modeling procedure. Furthermore, the predictive 
errors were reduced by 14–40% when similar computation 
efforts were made on data acquisition.
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