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a b s t r a c t 

Although chemical processes are traditionally evaluated according to economic criteria under the des- 

ignated normal conditions, it is still necessary to ensure the operational feasibility of a given process 

design in conditions deviated from the nominal levels. The purpose of the current study is to reduce the 

computation time and improve the practical applicability of the quantification method for calculating dy- 

namic flexibility index. In this study, the two-level optimization problem for computing flexibility index 

has been handled with two different solution strategies. The lower-level maximization is performed with 

a deterministic solver whereas the upper-level minimization a metaheuristic algorithm. To expedite im- 

plementation of the proposed methodology, the manipulated variables are treated as piecewise-constant 

functions of time. Two numerical examples of varying complexity are presented in this paper to demon- 

strate the feasibility and effectiveness of the aforementioned computation procedure. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

The chemical processes, designed on the basis of nominal op- 

rating conditions and parameter values, have traditionally been 

valuated with economic criteria. This approach may end up with 

 plant which becomes inoperable in realistic environment if some 

f the operating conditions and/or model parameters significantly 

eviate from their nominal levels. These uncertainties are not al- 

ays stochastic, as they may arise either from the unexpected ex- 

genous disturbances (such as those in feed qualities, product de- 

ands, and environmental conditions) or from the inexplicable er- 

ors in estimation of model parameters (such as heat transfer co- 

fficients, reaction rate constants, and other physical properties). 

herefore, there is a need to incorporate considerations for un- 

ertainties at the design stage. The ability of a chemical process 

o maintain feasible operation despite unexpected deviations from 

he nominal state is often referred to as its operational flexibility . 

arious computation approaches to facilitate quantitative flexibility 

nalysis have already been proposed ( Zhou et al, 2009 ; Chang and 

di, 2018 ). 

The steady-state flexibility index , denoted as F I s in this paper, 

as been used basically as a gauge of the feasible region in the 

arameter space for the continuous processes ( Swaney and Gross- 

ann, 1985 I; Swaney and Grossmann, 1985 II; Lima et al, 2010 ). 
∗ Corresponding author. 

E-mail address: ctchang@mail.ncku.edu.tw (C.-T. Chang). 
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his index is associated with the maximum allowable deviations 

f the uncertain parameters from their nominal values, through- 

ut which a feasible operation can be ensured with proper ad- 

ustment of the manipulated variables. It was also shown that, 

nder convexity assumptions, the critical points that limit flexi- 

ility must lie on the vertices of the hypercube inscribed in the 

arameter space. This particular insight is the foundation of the 

o-called “vertex method” for computing the flexibility index. In 

 later study, Grossmann and Floudas (1987) tried to simplify the 

wo-level optimization problem of the vertex method by exploiting 

he fact that the active constraints represent bottleneck of a design 

nd developed successive mixed integer linear (MILP) and mixed 

nteger nonlinear programming (MINLP) models for computing the 

exibility index. This calculation procedure has been referred to as 

he “active set method.”

Dimitriadis and Pistikopoulos (1995) later suggested charac- 

erizing an unsteady system with the dynamic flexibility index 

 F I d ). Two computation algorithms, which are the extended ver- 

ions of the aforementioned vertex method and active set method, 

ave also been proposed by Kuo and Chang (2016) and Wu and 

hang (2017) respectively. Although successful applications on spe- 

ific examples were reported, these methods are still not mature 

nough for the flexibility analysis in practice. It is often tedious to 

ompute F I d even for moderately complex dynamic systems. This 

s due to an overwhelmingly large number of vertices created by 

he need to discretize the differential equations in implementing 

he extended vertex method. In particular, if n θ is the number of 

ncertain parameters and M is the number of discretized intervals 

https://doi.org/10.1016/j.compchemeng.2021.107464
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compchemeng
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compchemeng.2021.107464&domain=pdf
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ver the entire time horizon, then ( 2 n θ ) M+1 should be the total 

umber of vertices. On the other hand, in the case of the active set 

ethod, the necessary conditions for the constrained minimiza- 

ion problem must be incorporated to formulate the mathematical 

odel. Since a large number of extra integer variables and the cor- 

esponding constraints are introduced, convergence to the global 

ptimum is not always guaranteed. 

Therefore, the primary objective of the current study is to de- 

elop a generalized numerical procedure so as to improve the ef- 

ciency of prevalent methods for computing the dynamic flexibil- 

ty index. This procedure should in turn indirectly enhance the ap- 

licability of flexibility analysis for dynamic systems. The rest of 

he paper is organized as follows. Firstly a brief review of the con- 

entional computation methods for evaluating the dynamic flexi- 

ility index is presented in section 2 . The suggested improvements 

n the form of additionally imposed constraints are presented in 

ection 3 . Subsequently, the proposed computation strategies are 

resented in section 4 . Section 5 depicts the numerical results ob- 

ained from application of these strategies to two dynamic pro- 

esses and the critical analysis of these results. Section 6 highlights 

he advantages of the proposed methodology along with the com- 

arison with its conventional counterpart. The final concluding re- 

arks are given in section 7. 

. Review of Available Solution Methods 

To facilitate clear illustration of the proposed computation 

trategies, a few related issues are first reviewed in the sequel. 

.1. Definition of dynamic flexibility index 

Two index sets, I and J, have been introduced to enumerate and 

lassify all constraints in the given model: 

 = { i | i is the index of an equality 

constraint in the design model } (1) 

 = { j | j is the index of an inequality 

constraint in the design model } (2) 

The i th equality constraint in the model can be expressed in 

eneral as 

h i 

(
d , z ( t ) , x ( t ) , ˙ x ( t ) , θ( t ) 

)
= 

˙ x i ( t ) − ϕ i 

(
d , z ( t ) , x ( t ) , θ( t ) 

)
= 0 

(3) 

here, x i (0) = x 0 
i 
; i ∈ I ; t ∈ [ 0 , H ] and H is the length of time hori-

on; d represents a constant vector in which all design specifica- 

ions are stored; z(t) ∈ R n z denotes the manipulated variables at 

ime t , x (t) ∈ R n x denotes the state variables at time t and θ(t) ∈
 

n θ denotes the uncertain parameters at time t . Notice that ϕ i is 

 given function of three types of functions of time, i.e., z(t) , x (t) ,

(t) , and it is usually established to model the dynamic behaviour 

f an unsteady process over the given time horizon. In this paper, 

he total number of equality constraints is denoted by n e . Finally, 

otice that Eq. (3) implies that the given dynamic system consists 

f ordinary differential equations (ODEs) only. 

Similarly, the j th inequality constraint in this model can be 

ritten as 

 j 

(
d , z ( t ) , x ( t ) , θ( t ) 

)
≤ 0 (4) 

here, j ∈ J and g j is also a given function. Note that Eq. (4) is

ften adopted to reflect the physical and/or chemical boundaries 

n a given process (e.g. the capacity limit). The total number of 

nequality constraints is denoted as n . 
i 

2 
The anticipated upper and lower bounds on the uncorrelated 

ncertain parameters can be incorporated in the present model as 

ollows. 

N ( t ) − �θ−( t ) ≤ θ( t ) ≤ θN ( t ) + �θ+ ( t ) (5) 

These bounds may be extracted from historical records for spe- 

ific applications. 

Let us next introduce a feasibility functional � , whose scalar 

alue is dependent upon the given design specifications in d and 

lso the chosen feasible time profiles of parameters in θ(t) . More 

pecifically, this functional must be determined by solving a two- 

evel optimization problem described below: (
d, θ( t ) 

)
= min 

x ( t ) , z ( t ) 
max 

j,t 
g j 

(
d, z ( t ) , x ( t ) , θ( t ) 

)
(6) 

ubject to the constraints in Eq. (3) and (4) for both the lower and

pper-level optimization problems. Also, it is assumed in this study 

hat the uncertain deviations in the system are realized before de- 

isions can be taken to adjust the manipulated variables so as to 

ounter the system upsets. Note that the given system can be guar- 

nteed to be always operable only if the feasibility functional value 

s non-positive, i.e., � ≤ 0 . 

In order to facilitate the evaluation of dynamic flexibility index, 

 I d , a scalar variable δ is introduced to adjust the ranges men- 

ioned in Eq. (5) , i.e. 

N ( t ) − δ�θ−( t ) ≤ θ( t ) ≤ θN ( t ) + δ�θ+ ( t ) (7) 

The corresponding dynamic flexibility index F I d can be 

omputed by solving another multi-level optimization problem 

 Dimitriadis and Pistikopoulos, 1995 ) i.e. 

 I d = max δ (8) 

ubject to Eq. (7) and the inequality constraint presented below 

ax 
θ( t ) 

�
(
d , θ( t ) 

)
≤ 0 (9) 

.2. Extended vertex method 

Under the assumption that the manipulated variables can be 

djusted arbitrarily at will, an extended version of the traditional 

ertex method was developed by Kuo and Chang (2016) for com- 

uting F I d . It was assumed that the critical points must be located 

t the vertices in a functional space formed by θ(t) . Based on this 

ssumption, a two-level optimization problem was developed for 

omputing the dynamic flexibility index, i.e. 

 I d = min 

k 
max 

δ, z ( t ) , x ( t ) 
δ (10) 

ubject to Eqs. (3) and (4) for the lower-level optimization problem 

nd also the following constraints in a function space formed by all 

ossible time profiles of θ(t) : 

( t ) = θk ( t ) = θN ( t ) + δ�θk ( t ) (11) 

here, �θk (t) denotes a vector pointing from the nominal point 
N (t) towards the k th vertex ( k = 1 , 2 , · · · , 2 n θ ) at time t . Note that

ach element in �θk (t) should be obtained from the correspond- 

ng entry in either −�θ−(t) or �θ+ (t) . Finally, since the corre- 

ponding computation procedure has already been presented else- 

here ( Kuo and Chang, 2016 ), the detailed algorithm of the ex- 

ended vertex method is omitted for the sake of brevity. 

.3. Extended active set method 

Under the assumption of unconstrained manipulated variables, 

he mathematical program for computing the feasibility functional 
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efined in Eqs. (3) , (5) and (6) was reformulated by Wu and 

hang (2017) with an extra scalar variable u (t) as follows (
d , θ( t ) 

)
= min 

x ( t ) , z ( t ) ,u ( t ) 
u ( t ) | t= H (12) 

ubject to the equality constraints in Eq. (3) , and also 

˙ 
 ( t ) = 0 (13) 

 j 

(
d , z ( t ) , x ( t ) , θ( t ) 

)
≤ u ( t ) (14) 

To facilitate derivation of the necessary conditions for this con- 

trained functional minimization problem, all equality constraints 

n Eq. (3) were rewritten in a vector form as 

 

(
d , z ( t ) , x ( t ) , θ( t ) 

)
− ˙ x ( t ) = 0 ; x ( 0 ) = x 0 (15) 

An aggregated objective functional can be constructed by intro- 

ucing Lagrange multipliers (denoted as μ1 , μ2 and λ) to incorpo- 

ate of all constraints in this optimization problem, i.e. 

 = u ( H ) + 

H ∫ 
0 

{
μ1 ( t ) [ 0 − ˙ u ] + μ2 ( t ) 

T 
[ ϕ − ˙ x ] + λ( t ) 

T 
[ g − u 1 ] 

}
dt 

(16) 

here, 1 = [1 , 1 , · · · , 1] 
T 
. The multipliers of all equality constraints, 

.e., μ1 and μ2 , are real, while those for the inequalities, i.e., λ, 

hould be real and nonnegative. By taking the first variation of L 

nd then setting it to zero, one can produce the following four 

roups of necessary conditions from Eqs. (12) – (16): 

1 ( 0 ) = 0 , μ1 ( H ) = 1 , x ( 0 ) = x 0 , μ2 ( H ) = 0 (17) 

·
2 = −μT 

2 

(
∂ϕ 

∂x 

)
− λT 

(
∂g 

∂x 

)
, ˙ μ1 = λT 1 (18) 

T 
2 

(
∂ϕ 

∂z 

)
+ λT 

(
∂g 

∂z 

)
= 0 

T (19) 

·
 

= ϕ, ˙ u = 0 , λT ( g − u 1 ) = λ ≥ 0 (20) 

Since, at least one of the inequality constraints must be active 

t a certain time instance when the extremum is reached, it is nec- 

ssary to set u (t) = 0 for the entire horizon. Thus, the conditions

n Eq. (20) should be modified as follows: 

·
 

= ϕ, u = 0 , λT g = 0 , λ ≥ 0 , g ≤ 0 (21) 

Therefore, the dynamic flexibility index can be determined by 

inimizing δ, subject to the necessary conditions specified in 

qs. (17) – (19), (21), and also the aforementioned constraints im- 

osed upon the uncertain parameters, i.e., Eq. (7) , for computing 

he dynamic flexibility index. 

Next, by introducing a time-dependent slack variable s j (t) and 

 corresponding binary variable y j (t) to characterize each inequal- 

ty in Eq. (4) , the last three constraints in Eq. (21) , i.e., λT g =
 , λ ≥ 0 and g ≤ 0 , can be rewritten as 

 j 

(
d , z ( t ) , x ( t ) , θ( t ) 

)
+ s j ( t ) = 0 (22) 

 j ( t ) − U 

[
1 − y j ( t ) 

]
≤ 0 (23) 

j ( t ) − y j ( t ) ≤ 0 (24) 

here, j ∈ J ; y j (t) ∈ { 0 , 1 } ; s j (t) ≥ 0 ; λ j (t) ≥ 0 ; t ∈ [ 0 , H ] ; U is a

ufficiently large positive constant. Based on the constraints in (22) 

nd (23), it can be deduced that y j = 1 implies s j = 0 and, thus,

he corresponding inequality constraint becomes active at time t. 
3 
s a result, the dynamic flexibility index can be determined by 

olving the programming model given below: 

 I d = min 

δ, μ1 ( t ) , μ2 ( t ) , λ( t ) , s ( t ) , y ( t ) , x ( t ) , z ( t ) 
δ (25) 

ubject to the constraints in Eqs. (7) , (15) , (17) – (19) and (22) –

24). Notice that, for the purpose of computing F I d , the original 

aximization problem is replaced here with a minimization one. 

his is because of that fact that Eqs. (3) , (6) - (9) imply that at

east one inequality constraint must be active at a particular time 

nstance and this requirement can be guaranteed with the afore- 

entioned model. 

Notice that, although z(t) ∈ R n z are considered to be unspecified 

rbitrary functions of time over [ 0 , H ] in (3) and (4), it is compu- 

ationally more convenient and practically more feasible to view 

hem as piecewise-constant profiles. Consequently, the dimension 

f space formed by the manipulated variables can be transformed 

rom infinite to finite at n z N z + 1 (where N z is the number of hori- 

ontal line segments in the time profiles of manipulated variables) 

nd, furthermore, the upper limit of the number of aforementioned 

ctive constraints in an optimum solution may be set to be this 

articular finite value. Finally, notice that z(t) should reduce to the 

riginal arbitrary functions of time in (3) and (4) if N z approaches 

nfinity. As a result, the flexibility index value should increase as 

he number of manipulated-variable pieces, i.e., N z , increases. Fur- 

hermore, in most cases, this number does not have to be raised 

o a very high level for the corresponding F I d to saturate and such 

 stabilized value should be taken as the actual dynamic flexibility 

ndex of the given system. 

. Auxiliary Constraints 

As mentioned before, the presented study aims to overcome the 

nherent limitations in the prevalent methods in calculating the 

ynamic flexibility index. A few auxiliary constraints have been in- 

roduced to improve computation efficiency and they are outlined 

elow. 

Firstly, the constraints in (4) can usually be represented more 

xplicitly in practical applications by dividing them into two 

roups of simpler inequalities. Specifically, these two groups may 

e written as 

 j, lo ≤ x j ( t ) ≤ x j, up ∀ j ∈ J ( x ) (26) 

 j, lo ≤ z j ( t ) ≤ z j, up ∀ j ∈ J ( z ) (27) 

here, J (x ) ∪ J (z) = J ; x j,lo and x j,up are constants which denote the 

ower and upper bounds of the j th state variable, respectively, and 

 j,lo and z j,up are the constants which represent the lower and up- 

er bounds of the corresponding manipulated variables, respec- 

ively. To facilitate clear discussion later in this paper, the binary 

ariables in (23) and (24) are rewritten as y (x ) 
j,up 

(t) , y (x ) 
j,lo 

(t) , y (z) 
j,up 

(t)

nd y (z) 
j,lo 

(t) for representing the binary variables corresponding to 

he inequality constraints in (26) and (27). 

Secondly, since both the active set method and the vertex 

ethod are established on the basis of the necessary conditions 

f a stationary point, there may be multiple optimum solutions. In 

ddition, it seems impractical to allow instantaneous and contin- 

ous adjustments of the manipulated variables in practice. There- 

ore, it is possible to assume that, without yielding suboptimal re- 

ults, the manipulated variables are piecewise constant. As men- 

ioned previously in subsection 2.3 , the maximum number of ac- 

ive constraints in an optimum solution may then be set according 

o the number of the horizontal line segments. This assumption 
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ay be expressed mathematically as follows 

 ( t ) = 

N z ∑ 

k =1 

z k ( t ) (28) 

˙  k ( t ) = 0 , ∀ t ∈ 

[
ˆ t k −1 , ̂  t k 

]
(29) 

 k ( t ) = 0 , if t / ∈ 

[
ˆ t k −1 , ̂  t k 

]
(30) 

here, k = 1 , 2 , · · · , N z and 0 = ̂

 t 0 < ̂

 t 1 < · · · < ̂

 t N z = H. It should be

oted that N z � = n z , N z ≤ M and, for convenience, ˆ t k is chosen to be 

ne of the time points ( t p ) used for discretization. Notice also that 

 k (t) should also be bounded according to (27) and, thus, y (z) 
j,up 

(t) 

nd y (z) 
j,lo 

(t) can be replaced respectively by y (z) 
j,k,up 

, and y (z) 
j,k,lo 

for 

 ∈ [ t k −1 , t k ] . 

Thirdly, Inequality (31) below represents the requirement that 

he sum of the total number of active constraints in the form of 

oth (26) and (27) should not be more than ( n z Nz + 1) . 

M 

 

e =1 

∑ 

j∈ J ( x ) 

[
y ( 

x ) 
j, up ( t e ) + y ( 

x ) 
j, lo ( t e ) 

]
+ 

N z ∑ 

k =1 

∑ 

j∈ J ( z ) 

[ 
y ( 

z ) 
j,k, up 

+ y ( 
z ) 

j,k, lo 

] 
≤ n z N z + 1 

(31

. Proposed Computation Strategies 

The previously described extended vertex method has been in- 

egrated with an effective metaheuristic search method, namely, 

he genetic algorithm ( Holland, 1992 ), to devise an efficient com- 

utation procedure. Also, for efficient computation, the given set 

f dynamic equations is discretized and transformed into a set of 

lgebraic equations with the trapezoidal rule. For the sake of com- 

leteness, more specific discretization steps are outlined in the Ap- 

endix. The detailed description of the proposed search strategies 

nd the complete computation procedure are provided henceforth. 

.1. Vertex based search strategy using genetic algorithm 

After discretization and incorporation of the auxiliary con- 

traints, (3), (4), (10) and (11) can be replaced with the following 

ormulation: 

 I d = min 

k 
max 
δk , Z, X 

δk (32) 

ubject to (26), (27) and 

( t p ) = θN ( t p ) + δk �θk ( t p ) (33) 

here, p = 0 , 1 , 2 , · · · , M; k = 1 , 2 , · · · , ( 2 n θ ) M+1 ; X =
 x ( t 1 ) , x ( t 2 ) , . . . .. x ( t M 

) ] ; Z = [ z ( ̂ t 1 ) , z ( ̂ t 2 ) , . . . .. z ( ̂ t N z ) ] . 

To implement the genetic algorithm, every chromosome is en- 

oded with the time points at which the critical corner of the fea- 

ible region of uncertain parameters shifts. Specifically, the chro- 

osome can be constructed with a sequence of n z N z + 1 genes, 

.e., ( ̃ t 1 , ̃  t 2 , · · · , ̃  t n z N z +1 ) , where ˜ t l denotes the l th ( l = 1 , 2 , · · · , n z N z +
 ) time point at which the aforementioned corner shift takes 

lace. Note that the total number of such time points (i.e. 
˜ 
 1 , ̃  t 2 , · · · , ̃  t n z N z +1 ) is bounded according to (31) and n z and N z are 

ssumed to be given. This is because of the fact that an inequal- 

ty constraint most likely goes active in response to drastic change 

n one or more uncertain parameter. The proposed search strategy 

ay be summarized as follows: 

i The individuals (chromosomes) in the first generation are cre- 

ated with the random number generator embedded in MAT- 

LAB. Each gene in a chromosome should correspond to ˜ t l . 

Specifically, the chromosome structure may be expressed as 

[ ̃ t 1 , ̃  t 2 , · · · , ̃  t n z N z +1 ] and 

˜ t 1 < ̃

 t 2 < · · · < ̃

 t n z N z +1 . 
4 
ii The lower-level maximization problem in Eq. (32) along with 

the corresponding constraints in Eqs. (A1) , ( A2 ) in the Ap- 

pendix, (28)-(31) and (33) for every individual in each gener- 

ation is solved with GAMS. 

iii The upper-level minimization in Eq. (32) for each generation is 

performed in MATLAB by selecting the smallest value among all 

δk obtained in the said generation. 

iv In implementing the genetic algorithm, the individuals to 

be propagated to the next generation are selected through 

Roulette-wheel selection method. Subsequently, the single- 

point crossover and mutation operations are performed accord- 

ing to their respective probabilities provided by the user. 

v Steps (ii) to (iv) are repeated till the given generation number is 

reached. The smallest δk value amongst all generations is cho- 

sen as the dynamic flexibility index, F I d . 

For the lower-level maximization calculations suggested in 

q. (32) , the CONOPT solver in GAMS (version 27.3.0) was de- 

loyed. The use of a local solver here is appropriate since the 

ame optimization run is carried out repeatedly for every individ- 

al in each generation. This practice increases the probability of ul- 

imately finding the global optimum in a computationally efficient 

ay. 

The genetic algorithm has been realized with a MATLAB code 

MATLAB version 2020a). The data flows between GAMS and MAT- 

AB were facilitated with interface software GDXMRW ( G AMS D ata 

 x change M ATLAB R ead W rite). The input to GAMS is an individ- 

al chromosome. The CONOPT solver in GAMS is used to evalu- 

te the maximum value of δk value for each chromosome in every 

eneration that corresponds to lower-level maximization problem 

escribed in Eq. (32) , which is subject to the constraints in (A1), 

A2) in the Appendix, (28)-(31) and (33), and then return to the 

ATLAB, where the minimum δk values of all generations are com- 

ared and the smallest of them is reported as the dynamic flexi- 

ility index, F I d . The GA parameters in MATLAB code are provided 

y the user, which include: the upper and lower bounds of the ge- 

etic value (time domain), the maximum number of generations, 

he total number of individuals in each generation and the respec- 

ive probabilities for crossover and mutation. One can find further 

etails from the flowchart in Fig. 1 . 

.2. A generalized computation procedure 

It has been explained previously in subsection 2.3 that it is 

dvantageous to treat the manipulated variables as piecewise- 

onstant time profiles. This approach has been incorporated into 

he aforementioned GA-assisted vertex enumeration strategy to de- 

elop the following generalized compuation procedure. 

i In the first step, for a given n z and N z , F I d is evaluated with 

the GA-assisted vertex search strategy described in the previous 

subsection. The time points at which the corner shifts might 

occur can also be obtained from the corresponding optimiza- 

tion result. 

ii The evaluation of F I d in the above step is performed repeat- 

edly after gradually increasing the number of manipulated- 

variable instances, N z . The computation is terminated when the 

F I d value converges. The resulting F I d is considered to be the 

dynamic flexibility index for the given system. 

The flowchart of the above calculation procedure is presented 

n Fig. 2 . 
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Fig. 1. Genetic algorithm assisted vertex enumeration 

Fig. 2. Generalized computation procedure to evaluate FI d 

5 
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Fig. 3. A buffer tank 
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. Numerical Examples 

.1. Buffer Tank 

Let’s consider the buffer tank shown in Fig. 3 . The correspond- 

ng dynamic model can be written as; 

 

dh ( t ) 

dt 
= θ ( t ) − q out ( t ) (34) 

here, h denotes the height of liquid level ( m ) and it is the only

tate variable in the present example; A ( = 5 m 

2 ) is the cross-

ectional area of the tank and it is a design specification; θ de- 

otes the feed flowrate ( m 

3 / min ) and it is treated as an uncer- 

ain parameter; q out denotes the flow rate in the outlet pipeline 

 m 

3 / min ) and is the manipulated variable. 

The allowed ranges of state and manipulated variables are cho- 

en in this example as follows; 

The upper bound on the height of water level in tank is 10 m , 

hile the minimum allowable height is set at 1 m due to the head 

equirement of pump suction. In other words, the state variable h 

hould be kept in the following range 

 ≤ h ≤ 10 . (35) 

Since the maximum outlet flowrate is dependent on the pump 

ischarge pressure and control valve specifications, it is assumed 

hat this flow rate can be varied in the range of 

 ≤ q out ≤ 0 . 7 (36) 

To facilitate dynamic flexibility quantification, let us assume 

hat the time horizon covers a span of 800 minutes, i.e., 0 ≤ t ≤
00 , with an initial height of liquid level at 5 m . Although the 

roposed procedure can be adopted for computing the flexibility 

ndex of any dynamic system, let us consider the steady operation 

f the above buffer tank for illustration convenience. Specifically, 

t is assumed that the nominal level of feed rate is kept constant 

hroughout the horizon at θN (t) = 0 . 5 m 

3 / min and, due to uncer-

ain upstream disturbances, the corresponding largest possible pos- 

tive and negative deviations are: �θ+ (t) = �θ−(t) = 0 . 5 m 

3 / min .

As mentioned before, the maximum number of active con- 

traints in the given system can be determined according to the 

otal number of shifts in the uncertain parameter profile. Specifi- 

ally, starting from N z = 2 in the present example, the total num- 

er of shifts in the uncertain parameter profile has been calcu- 

ated based on Eq. (31) , i.e., n z N z + 1 . The proposed computation 

rocedure has been applied to the buffer system described above. 

ote that, the number of generations adopted in GA was taken 

o be 100, whereas the probabilities for crossover and mutation 

ere chosen to be 0.8 and 0.2, respectively. It has been observed 
6 
hat F I d of the present system tends to increase as the number of 

anipulated-variable instances, N z , increases. However, the value 

f the former becomes saturated at a finite value of the latter. In 

ther words, beyond a certain value of N z , F I d tends to be stabi- 

ized eventually. This final value of F I d is taken to be the dynamic 

exibility of the given system. 

A summary of the computation results obtained in the present 

xample can be found in Table 1 . In this table, the number of 

anipulated-variable instances, the dynamic flexibility value, the 

ime points of active constraints and the convergence time are 

isted in column 1 – column 4, respectively. The time profiles of 

he state variable ( h ), the manipulated variable ( q out ) and the un-

ertain parameter ( θ ) for N z = 2 and N z = 8 are shown in Figs. 4 (a)

 4(c) and Figs. 5 (a) - 5(c) respectively. Notice that the dashed 

ines in Fig. 4 (c) and Fig. 5 (c) both denote the nominal level of

he uncertain parameter. It can also be observed from Table 1 , 

ig. 4 (a) and Fig. 5 (a) that the state variable ( h ) is activated 3

imes for the case when N z = 2 whereas h gets activated only once 

or the case when N z = 8 . The time profile of manipulated vari- 

ble ( q out ) in Fig. 4 (b) can be found to be at two different values

ithin the specified horizon when N z = 2 , while it can be seen 

rom Table 1 and Fig. 5 (b) that q out always remains activated at 

he upper bound (0.7 m 

3 /min) when N z = 8 . 

It can also be witnessed from Figs. 4 and 5 that activation of 

onstraint(s) in state and/or manipulated variable(s) is expectedly 

receded by a corner shift in the uncertain parameters. Let us con- 

ider the numerical results in Table 1 , Figs. 4 (a) and 4(c) when

 z = 2 . It can be observed that the liquid height in tank ( h ) gets

ctivated at upper bound around 526 minutes, which occurs in re- 

ponse to the corner shift from negative to positive direction in 

ncertain parameter ( θ ) around 200 minutes. 

.2. Alcoholic Fermentation Process 

Beer making is one of the earliest biochemical reactions known 

o humans. The brewing method involves soaking of starch- 

ontaining grains in water to ferment with other organic sub- 

tances. Fig. 6 shows an alcoholic-fermentation system ( Fabro and 

rruda, 2003 ; Serra et al, 2005 ), which can be considered as a con-

inuously stirred tank reactor (CSTR). In particular, the composition 

f the outlet stream is assumed to be the same as that within the 

ank. S a (t) in Fig. 6 denotes the nutrient, i.e., glucose, concentra- 

ion ( g/L ) in the feed stream and is assumed to be an uncertain pa-

ameter in this example. On the other hand, T (t) is another uncer- 

ain parameter which represents the temperature ( °C) of the cul- 

ure. F in (t) and F out (t) represent the flowrates ( L/h ) of the incom- 

ng and outgoing streams respectively and they are treated as the 

anipulated variables in this example. The state variables of the 

ystem include the glucose concentration, i.e., S(t) , the yeast-cell 

oncentration, i.e., C(t) , the alcohol concentration, i.e., P (t) , and the 

otal volume of the solution in the fermentation tank, i.e., V (t) , re- 

pectively. 

The dynamic model of the alcoholic fermentation system may 

e expressed as follows: 

dS 

dt 
= − 1 

Y C/S 

μC + 

F in 
V 

S a − F out 

V 

S (37) 

dC 

dt 
= μC − F out 

V 

C (38) 

dP 

dt 
= 

Y P/S 

Y C/S 

μC − F out 

V 

P (39) 

dV = F in − F out (40) 

dt 
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Table 1 

Dynamic flexibility index of buffer tank 

Number of manipulated- variable pieces ( N z ) F I d Time points of activated constraints (Minutes) Convergence time (Seconds) 

2 0.264 h : 176, 526, 790 957 

4 0.468 h : 85,650; q out : 201-400 1190 

6 0.480 h : 800; q out : 1-800 1371 

8 0.480 h : 633; q out : 1-800 1495 

Fig. 4. Buffer tank variable time profiles for case N z = 2. (a) Height of liquid in tank, h; (b) Outlet flow rate, q out ; (c) Inlet flow rate, θ

Fig. 5. Buffer tank variable time profiles for case N z = 8. (a) Height of liquid in tank, h; (b) Outlet flow rate, q out ; (c) Inlet flow rate, θ

7 
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Fig. 6. Alcoholic fermentation in a CSTR 
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here, Y C/S ( = 0 . 07 ) is the nutrient-and-cell transformation con- 

tant; Y P/S ( = 0 . 44 ) is the nutrient-and-product conversion con- 

tant; μ ( h −1 ) is the specific growth rate of yeast cells, which can 

e expressed as 

= μ0 
S 

K s + S a 

(
1 − P 

P m 

)
(41) 

here, K S ( = 10 g/L ) is the Michaelis-Menten constant; 

 m 

( = 10 g/L ) is the inhibitory coefficient of alcohol on the 

ell growth; μ0 ( h −1 ) is the maximum specific growth rate of 

east cells. The effect of culture temperature on the maximum 

pecific growth rate of yeast can be described with the following 

mpirical relationship: 

0 = −0 . 0 0 0 049205 × T 4 +0 . 00569477 × T 3 

−0 . 24584 × T 2 +4 . 7132 × T − 33 . 435 (42) 

The following ranges of state variables are adopted in this ex- 

mple: 

 . 5 ≤ V ≤ 5 . 0 (43) 

 < C ≤ 15 (44) 

 . 5 < S ≤ 80 (45) 

In addition, since the alcohol concentration of commercial beer 

s around 5 vol %, i.e., 40 g/L , the following constraint is imposed

pon the product concentration: 

 ≥ 40 (46) 

On the other hand, the limits of the manipulated variables are 

mposed as follows: 

 . 01 ≤ F in ( t ) ≤ 0 . 5 (47) 

 . 05 ≤ F out ( t ) ≤ 0 . 5 (48) 

Finally, the entire duration of operation is set to be 240 hours 

n this example, and the initial states are assumed to be: S(0) = 

 . 5 g/L , C(0) = 5 g/L , P (0) = 50 g/L and V (0) = 1 . 5 L . The nominal

alue of uncertain parameter S a (t) is fixed at 100 g/L with a pos- 

ible deviation of 50 g/L in either positive or negative direction, 

hile the nominal level of T (t) is chosen to be 25 ◦C with a pos-

ible deviation of 10 ◦C in either direction. 
8 
In the present example, all possible combinations of the ini- 

ial directions of uncertain parameters were tested. For the sake of 

revity, Table 2 only shows the results for the case when both S a 
nd T deviate toward the positive direction initially. Also, the GA 

arameters were kept the same as those adopted in the previous 

xample. From the results presented in Table 2 , the dynamic flex- 

bility index of the given system can be seen to increase with the 

ncrease in manipulated-variable instances. This trend stabilizes at 

 value of 0.490 when N z = 10 . Also presented in Figs. 7 (a) - 7(d)

nd 8(a) – 8(d) are the time profiles of state variables, uncertain 

arameters and manipulated variables for the case N z = 10 . The 

ashed lines in the Figs. 8 (a) and 8(b) signify the nominal levels 

f respective uncertain parameters. 

For this particular case when N z = 10 , it can be observed that 

he inequality constraint imposed on alcohol concentration ( P ) 

ouches lower bound ( 40 g/L ) at six time instances (see Fig. 7 (b)

nd Table 2 ); It can also be observed that the liquid volume ( V )

oes active on the upper bound ( 5 L ) at the final time point (see

ig. 7 (d) and Table 2 ); The inlet flowrate ( F in ) can be found to be

ctivated at the minimum value of 0 . 01 L/h in the time interval 

rom 49 h to 96 h ( Fig. 8 (c) and Table 2 ), while the outlet flowrate

 F out ) remains activated at the minimum level of 0 . 05 L/h through- 

ut the entire time horizon (see Fig. 7 (d) and Table 2 ). 

Let us take a closer look at Table 2 , Figs. 7 (b), 8(a), 8(b),

nd 8(c) when N z = 10 . Notice that the alcohol concentration ( P ) 

ouches the lower limit at 99 hours and this time instance is pre- 

eded by the corner shift from positive to negative direction in the 

ncertain parameter T around 70 hours. Notice also that the in- 

et flowrate ( F in ) reaches the allowed minimum at 49 hours in re- 

ponse to the corner shift from positive to negative direction in 

ncertain parameter S a around 40 hours. 

. Additional Discussions on Computation Results 

First of all, it should be noted that the aforementioned con- 

traint in (31) can be confirmed with the numerical results pre- 

ented in the two examples. Secondly, as mentioned before in 

ubsection 2.3 , it was expected that the dynamic flexibility in- 

ex ( F I d ) would increase with the increase in the number of 

anipulated-variable pieces ( N z ). This trend should continue until 

 I d stabilizes and attains a fixed value which can be considered as 

he actual flexibility index of the given system. As can be seen in 

he second column of either Table 1 or Table 2 , the numerical re- 
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Table 2 

Dynamic flexibility index of an alcoholic fermentation system 

Number of manipulated- 

variable pieces ( N z ) 

F I d Time points of activated constraints (hours) Convergence Time (Seconds) 

2 0.455 P: 207, 240; V : 240 

F out : 1-240 

4507 

4 0.460 P: 121, 122, 227, 228; V : 240 

F out : 1-240 

5047 

6 0.470 P: 108, 109, 167, 168; V : 240 

F in : 41-80; F out : 1-240 

6040 

8 0.490 P: 128, 129, 174, 240; V : 240 

F in : 61-90; F out : 1-240 

6148 

10 0.490 P: 99, 132, 147, 183, 184, 233; V : 240 

F in : 49-96; F out : 1-240 

6723 

Fig. 7. Alcoholic fermentation tank state variable time profiles. (a) Yeast cell concentration, C; (b) Product alcohol concentration, P; (c) Glucose concentration, S; (d) Volume 

of liquid in tank, V 

Table 3 

A comparison of conventional and proposed vertex enumeration methods 

FI d Time points of activated constraints (Minutes) Convergence time (Seconds) 

Conventional vertex enumeration 0.157 h ; 321, 800 17186 

GA-assisted vertex enumeration 0.157 h ; 322, 800 895 
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ults confirm the aforementioned assertion. The proposed method 

unctions well for both examples and the finally saturated value of 

 I d can be obtained in a few (3-5) iterations. 

Finally, notice that the computation time needed in implement- 

ng the proposed method should be significantly less than that 

eeded by its conventional counterpart. Let us consider the special 

ase of N z = 1 and two corner shifts in the buffer-tank example 

or illustration clarity. Table 3 below show a comparison between 

he convergence times required by the conventional vertex enu- 

eration method and the proposed GA-assisted method. It can be 

bserved from this table that, although the values of dynamic flex- 

bility index and the time points of activated constraints in both 

ases are almost identical, the corresponding computation loads 

re drastically different. In particular, the conventional approach 

akes 171,186 seconds to converge, while the proposed approach 

nly needs 895 seconds. 
c  

9 
This stark difference in the convergence times may be ex- 

lained by the difference in the number of iterations to reach op- 

ima. In the buffer-tank example presented in subsection 5.1 , since 

0 individuals were adopted in each population for every 100- 

eneration GA run, 20 0 0 iterations were performed before secur- 

ng an optimum solution. As mentioned before in the Introduc- 

ion section, if the conventional exhaustive vertex enumeration ap- 

roach is applied according to (10) and (11) without additional 

imitation on the number of corner shifts, the number of vertexes 

hould be ( 2 n θ ) M+1 . Since n θ = 1 and M = 800 in this example, 

 

801 ( = 1 . 33 × 10 241 ) iterations are required and the corresponding 

omputation load is clearly overwhelming. Due to the fact that it 

s unrealistic to carry out the above calculation, an additional con- 

traint of two corner shifts was introduced to generate the results 

n Table 3 . Notice that the total number of vertexes with this added 

onstraint should be 2 × ( 
800 

2 
) . Since 2 801 = 2 × ∑ 800 

i =0 ( 
800 

i 
) , it is
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Fig. 8. Alcoholic fermentation tank uncertain parameter and manipulated variable time profiles. (a) Inlet glucose concentration, S a ; (b) Temperature of culture, T; (c) Inlet 

flow rate, F in ; (d) Outlet flow rate, F out 
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bvious that 2 800 
 ( 
800 

2 
) . Therefore, if the actual exhaustive ver- 

ex enumeration is to be implemented according to (10) and (11), 

he needed computation time must be much larger than that listed 

n Table 3 . 

In summary, the conventional vertex enumeration technique ev- 

dently would have convergence issues. On the other hand, with 

he proposed GA assisted vertex enumeration we could efficiently 

valuate the dynamic flexibility index, in relatively much lesser 

ime. Therefore, the proposed methodology could be regarded as 

ignificant in improving the practical applicability of flexibility in- 

ex quantification of the dynamic process systems. 

. Conclusions 

In this study, significant improvements have been introduced 

o modify the existing methods for efficient evaluation of flexibil- 

ty index of the dynamic process systems. The proposed changes 

ainly include (1) classification of inequality constraints in terms 

f state and control variables and (2) treatment of the manipu- 

ated variables as piecewise-constant functions of time rather than 

ontinuous functions. Moreover, a metaheuristic search algorithm, 

amely genetic algorithm, has been incorporated to develop a gen- 

ralized computation procedure for evaluating dynamic flexibility 

ndex. Two numerical examples have been included to demonstrate 

he effectiveness of the proposed methodology in terms of its as- 

ured convergence with reasonable accuracy and computation effi- 

iency. 
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10 
ppendix. Discretization of Dynamic Model 

A practically indispensable step for numerically computing F I d 
s to discretize the constraints in Eqs. (3) and (4) using a credible 

umerical technique ( Chang and Adi, 2018 ). Although numerous 

chemes are available, the simplest one, i.e., the trapezoidal rule, is 

resented here to facilitate a clear understanding. Let us first parti- 

ion the horizon [ 0 , H ] into M equal intervals with their end points 

enoted sequentially as p = 1 , 2 , · · · , M. Thus, the length of each

ime interval should be H/M (denoted as �t). By applying trape- 

oidal rule, one can approximate Eq. (3) as follows 

 i ( t p ) − x i 
(

t p−1 

)
= 

�t 

2 

[
ϕ i 

(
d , x 

(
t p−1 

)
, z 

(
t p−1 

)
, θ

(
t p−1 

))
+ ϕ i 

(
d , x ( t p ) , z ( t p ) , θ( t p ) 

)]
(A1) 

here, x i ( t 0 ) = x i (0) = x 0 
i 
, i ∈ I and p = 1 , 2 , · · · , M. Similarly,

q. (4) can also be discretized according to the aforementioned 

 + 1 boundary points as follows 

 j 

(
d , x ( t p ) , z ( t p ) , θ( t p ) 

)
≤ 0 ∀ j ∈ J (A2) 

here, p = 0 , 1 , 2 , · · · , M. 

Notice that, in order to apply the extended vertex method, it is 

ecessary to treat every state variable, every manipulated variable 

nd every uncertain parameter at each boundary point individually 

s distinct quantity. In other words, there should be n x M state vari- 

bles, n z ( M + 1 ) manipulated variables and n θ ( M + 1 ) uncertain 

arameters in the discretized model. Therefore, the total number 

f vertexes should be ( 2 n θ ) M+1 and it is clear that the correspond- 

ng computation load can be overwhelming even for a moderately 

omplex system. 

On the other hand, if the extended active set method 

s to be implemented, the time-varying, slack variables, 

 j (t) and j = 1 , 2 , · · · , n i , the binary variables y j (t) and

j = 1 , 2 , · · · , n i , along with the Lagrange multipliers, λ(t) ,

1 (t) and μ2 (t) , also have to be discretized. It should be 

oted that λ(t) = [ λ1 (t) λ2 (t) · · · λn i (t) ] T and 
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2 (t) = [ μ2 , 1 (t) μ2 , 2 (t) · · · μ2 , n e (t) ] T . In general, 

he total number of these variables is proportional to the number 

f time points ( t p ) chosen within the operation horizon [ 0 , H ] . 

he total numbers of discretized slack and binary variables should 

oth be n i ( M + 1 ) , while those of the Lagrange multipliers, λ(t) , 

1 (t) and μ2 (t) , should be n i ( M + 1 ) , M − 1 and n e M, respec-

ively. This significant increase in the total number of variables 

long with the fact that the constraints mentioned previously 

n Eqs. (13) - (24) now need to be satisfied at each of the time

oints, should drastically increase the computation load of the 

ptimization problem described in subsection 2.3 , and sometimes 

ven leads to difficulties in convergence. 
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