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A B S T R A C T   

Modeling of improved amine scrubbers using artificial neural networks (ANNs) were carried out in this study. 
Instead of training models from scratch with the case-by-case method, the expandable neural networks were 
utilized to progressively increase the number of model parameters and change the model input/output structures 
in a step-wise fashion. Efficient and rapid transformation of any existing model to a new one can be made 
realizable. This proposed strategy has been successfully validated in several process modification scenarios. From 
the experimental results, the required sampling sizes to achieve the similar prediction accuracy of the corre-
sponding baseline model were considerably smaller, and, furthermore, over 47% of total data acquisition time 
can be saved. Finally, the corresponding sensitivity analyses showed that the proposed models were physically 
interpretable and able to extract the correct process mechanisms in the sense that the gain scales and signs were 
consistent with those of their rigorous counterparts.   

1. Introduction 

Due to the increasing emission rates of greenhouse gases from the 
industries, the amine scrubbing process (which includes both absorber 
and stripper) is widely considered to be a feasible option for effective 
post-combustion CO2 capture (PCC) (Khalifa et al., 2022). However, the 
commercial-scale amine scrubber for CO2 capture is still not widely 
implemented today due to its high capital and operational costs. In 
addition, the current CO2 supply chains and the downstream conversion 
technologies are still unreliable to induce industrial applications of CO2 
capture, utilization and sequestration (CCUS) (Álvarez et al., 2017; 
Hasan et al., 2014). In other words, the development of CO2 capture 
technologies is still at the stage of pilot testing and demonstration 
(Rochelle et al., 2019; Wu et al., 2010; Zhuang et al., 2022). 

In recent years, a large number of researches have focused upon 
developments of amine scrubbing systems via absorbent improvements 
and process modifications (Aghel et al., 2022; Ahn et al., 2013; Borhani 
and Wang, 2019; Cousins et al., 2011). These studies aimed to raise the 
system performances by enhancing absorption efficiency and/or 
reducing energy consumption. Most of them relied on the first-principle 
models, e.g., Aspen HYSYS, to facilitate rigorous analyses. These models 
were derived typically on the basis of the complicated physiochemical 
equations to ensure high-fidelity simulations. Although successful 

implementations of simulation-based optimization studies have been 
reported (Oh et al., 2016), the use of first-principle models in numerical 
optimization applications may not always be effective due to the high 
complexity and nonlinearity (Chung and Lee, 2020). Furthermore, the 
corresponding optimization runs may even fail to converge (Alarie et al., 
2021). Therefore, the data-driven surrogate models can be considered to 
be a viable alternative to effectively lower the optimization effort (Ca-
ballero and Grossmann, 2008; Kajero et al., 2017; McBride and Sund-
macher, 2019). 

The data-driven models (DDMs) have already been applied exten-
sively to the analysis, optimization and monitoring of amine scrubbing 
processes. Nonlinear surrogate models were used for the systematic 
evaluations of steam consumption rate and equipment purchase cost 
needed to design and operate these plants (Chung and Lee, 2020). The 
multiple-regression technique was used to correlate and analyze the 
relationships among various critical parameters of amine scrubbing 
process (Wu et al., 2010; Zhou et al., 2009). A popular type of DDMs, 
that is, artificial neural networks (ANNs) have been applied in numerous 
studies to surrogate modeling of the typical amine scrubber (Goldstein 
et al., 2022; Li et al., 2015; Li et al., 2018; Nuchitprasittichai and Cre-
maschi, 2013; Sipöcz et al., 2011), and also been utilized to analyze and 
monitor the operations of real-world pilot plants (Wu et al., 2010; 
Zhuang et al., 2022). The scaled conjugate gradient (SCG) and 
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Levenberg-Marquardt (LM) algorithms were compared and adopted for 
modeling the simulative CO2 capture plants by the feedforward neural 
networks (Sipöcz et al., 2011). The accurate ANN surrogate model may 
also replace the objective function in optimization problems, e.g., CO2 
capture cost minimization (Nuchitprasittichai and Cremaschi, 2013). 
The ANNs were also applied to model and simulate the CO2 capture 
processes at different concentration levels, which were then compared 
with the simulation results of first-principle models (Goldstein et al., 
2022; Henao and Maravelias, 2011). Since DDMs’ predictions some-
times may be contaminated due to various uncertainty issues, the 
steady-state and dynamic surrogate models for estimating capture rate 
and level were constructed based on the bootstrap aggregated neural 
networks (BANNs) to enhance both accuracy and comprehensiveness (Li 
et al., 2015). Also, a similar modeling task was accomplished by using 
deep belief network (DBN) with many layers of restricted Boltzmann 
machine (RBM) to improve representation of its deep hierarchical fea-
tures (Li et al., 2018). Aside from surrogate modeling, the neural 
network synthesis and the corresponding prediction sensitivity analysis 
approaches were integrated to identify the relationships between the 
key parameters of a CO2 capture pilot plant (Wu et al., 2010). A dynamic 
hybrid-driven soft sensor which combines the chemical kinetic model 
and the long short-term memory (LSTM)-based model was also proposed 
to predict the CO2 concentration profile within the absorption column 
(Zhuang et al., 2022). 

Although ANN-based models have been extensively applied in the 
past to model the typical amine scrubber, its modified configurations 
have never been analyzed thoroughly. To construct the surrogate models 
for these modified configurations, the approach of training models from 
scratch individually is feasible but of course inefficient since the neural 
network parameters are randomly initialized, and a large number of 
samples should be collected from the corresponding high-fidelity 
simulation runs or pilot experiments. This modeling strategy should be 
considered to be computationally and economically expensive (Ochoa- 
Estopier et al., 2014). To resolve this issue of low model reusability 
(Goldstein et al., 2022), the transfer learning approaches are certainly 
appealing for a new model via utilizing the prior knowledge gained from 
previous learning from the process(s) with high similarities (Chuang 
et al., 2018; Hsiao et al., 2021; Lu et al., 2009). Nevertheless, since the 
input–output structures may vary if system configurations are modified, 
the modeling tasks may still be inefficient if multi-step flowsheet mod-
ifications take place at different stages of research and development. 
Therefore, in this study, the concept of progressive learning (Fayek et al., 
2020), i.e., incremental learning or continual/lifelong learning (Parisi 
et al., 2019), was adopted to progressively construct new models for 
various amine scrubbing configurations by reusing and expanding the 
existing ANN models. 

By following this improved novel modeling strategy, the number of 
input/output patterns and parameters of the existing models may be 
judiciously expanded to adapt to the new processes with only a small 
number of samples (Rusu et al., 2016; Yin et al., 2020; Yoon et al., 2018). 
In summary, a novel step-wise modeling procedure is proposed in this 
study for efficient construction of ANNs to characterize various modified 
configurations of the amine scrubbing process. More specifically, when 
compared with the base case, this approach is supposed to enable 
smoother and faster model transformations from the base structure to 
another improved ones with smaller sampling sizes and higher predic-
tion accuracies. 

2. Amine scrubbing process 

2.1. Typical configuration 

Fig. 1 depicts a typical amine scrubbing process, which consists of 
absorber, stripper, heat exchangers and pumps. The absorber is operated 
at the atmospheric pressure (i.e. 1 bar), while the stripper is pressurized 
to around 2 bar for energy-saving purpose. Before entering the scrubber, 

the particulate matter and impurities in flue gas from its source, i.e., SOx 
and NOx, are removed in pretreatment units (Korre et al., 2010). The 
pre-treated flue gas is then cooled down to a desired temperature and fed 
to the bottom of the absorber. The flue gas flow upward from bottom of 
the absorption column and counter-currently contacts with the down- 
flowing lean solvent introduced from the top. The chemical absorption 
reactions take place in the column together with complex heat and mass 
transfers. As a result, the CO2 content is gradually removed from the flue 
gas. After scrubbing, the treated gas is eventually vented from the 
overhead. In practical operations, before dispersing to the ambient air, 
the treated gas should first go through a water wash section to recover 
amine. On the other hand, the CO2 loading of amine solvent gradually 
rises up to a higher level as it flows downward, and finally leaves from 
the bottom. The rich solvent is regenerated in the stripper, where the 
captured CO2 is desorbed and used as the final product. This CO2 
product is then sent to the compression train and dehydration section to 
facilitate distribution to other CO2 user(s). Before entering the stripper 
from the top, it is a common practice to send the rich solvent to the lean/ 
rich cross heat exchanger (LRHX) to recover the sensible heat of the hot 
lean solvent from the bottom of the stripper. 

2.2. Modified configurations 

Modifying process flowsheets is an important approach to improve 
the energy efficiency of amine scrubbing systems (Ahn et al., 2013; 
Cousins et al., 2011; Le Moullec et al., 2014). A variety of modified 
configurations have been proposed and extensively studied to enhance 
the commercial feasibility of PCC applications. Typically, these config-
urations strive to reduce the specific reboiler duty and/or total equiva-
lent works. From the theoretical viewpoint, these modifications may be 
divided into three major categories, that is, absorber enhancement, heat 
integration and heat pumps (Le Moullec et al., 2014). The popular ap-
proaches for absorber enhancement, e.g., the intercooled absorber (ICA) 
or rich solvent recycle (RSR) (Dubois and Thomas, 2018; Le Moullec 
et al., 2014; Rezazadeh et al., 2017), aim to alter the chemical kinetics of 
absorption by manipulating the temperature profiles in the absorption 
column. Heat integration adjustments were used primarily to raise the 
thermodynamic reversibility by properly manipulating the mass flows 
for heat recovery, e.g., rich solvent split (RSS) (Le Moullec et al., 2014). 
On the other hand, the heat-pump-based modifications, e.g., mechanical 
vapor recompression (MVR) (Le Moullec et al., 2014; Li et al., 2022; 
Nguyen and Wong, 2021), were also attractive options for the reduction 
of specific reboiler duty. 

Modeling of the MVR-based configurations is considered to be a 
complicated and challenging task since the number of both input and 

Fig. 1. The flow diagram of the typical amine scrubbing process.  
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output variables are simultaneously increased as the configurations is 
derived from other simpler structure. For example, if the base configu-
ration is altered to form the lean/rich vapor recompression (LRVR) 
process, two input variables (i.e., lean flash pressure and rich flash 
pressure) and one output variable (i.e., vapor recompression duty) 
should be added to the new model. Consequently, the aforementioned 
highly related processes, including lean vapor recompression (LVR), rich 
vapor recompression (RVR), and LRVR, were selected to verify the 
effectiveness of model transformations with the proposed method. 

As shown in Fig. 2(b), the LVR process is the most popular MVR- 
based configuration found in the published literatures (Khalifa et al., 
2022). In this configuration, the lean solvent from the pressurized 
stripping column is flashed in a vessel at a lower pressure (Le Moullec 
et al., 2014). The overhead vapor is compressed and recycled back to the 
bottom of the stripper, while the bottom liquid is sent to the LRHX to 
heat up the cold rich solvent. The LVR process may be applicable to 
accommodate several different solvents, e.g., aqueous monoethanol-
amine (MEA), piperazine (PZ), ammonia and their blends (Dubois and 
Thomas, 2018; Nguyen and Wong, 2021; Ullah et al., 2019). Similar to 
the LVR process, the RVR configuration, i.e., Fig. 2(c), utilizes the vapor 
recompression operation to the rich solvent stream from the bottom of 
absorber (Le Moullec et al., 2014; Li et al., 2022). After the recovering of 
sensible heat from the hot lean solvent at the LRHX, the rich solvent is 
fed to a flash drum, and the rich vapor from top of the drum is then 
recompressed and injected to the bottom of the stripping column to 
serve as an additional vapor source. The rich liquid solvent at lower 
temperature from the bottom of the drum is fed to the top of the stripper, 
which effectively reduces the condenser duty. In addition, some studied 
the integration of LVR and RVR processes to form the so-called LRVR 
structure (see Fig. 2(d)), in which ammonia was adopted as solvent 
(Nguyen and Wong, 2021). The corresponding results showed that a 
total of 26–54% energy saving can be achieved with the LRVR config-
uration if compared with other ammonia-based amine scrubbers. 

2.3. Process simulations 

In this study, Aspen HYSYS V10 was employed to rigorously simulate 
the aforementioned different amine scrubbing processes. The Acid Gas- 
Chemical Solvents (AGCS) package was selected to simulate the process 
systems including sour gas (i.e., H2S and CO2) and aqueous amines 
(Dubois and Thomas, 2018). Notice that the AGCS package supports the 
reaction kinetics for chemical absorptions of sour gases by various 
aqueous amine solvents or their blends. The aqueous lean solvent 
around 30 wt% MEA was used in this study. To simulate the absorber 
and stripper, HYSYS column modules were utilized, and the Modified 
HYSYS Inside-Out algorithm with the adaptive damping factor was 
selected as their solvers in the simulation runs (Oh et al., 2016). For all 
simulated processes, the recycled streams for lean solvent circulation 
were considered by adopting the HYSYS “Recycle” module. The mini-
mum approach temperature of LRHX was set as 10 ◦C. In the cases of 
LVR and LRVR processes, the flashed lean vapor was recompressed and 
recycled back to the bottom of the strippers. This extra recycle loop 
requires an additional “Recycle” module to facilitate converge in the 
corresponding simulation runs (Dubois and Thomas, 2018). 

2.4. Data acquisition 

Four datasets for the base and the three modified configurations were 
collected by high-fidelity simulation runs in Aspen HYSYS with the help 
of automation techniques based on Component Object Model (COM) 
protocol (Santos Bartolome and Van Gerven, 2022) supported by the 
Python win32com package. Sufficient steady-state samples should be 
collected through repeated simulation runs. To ensure statistical di-
versity of the collected data (Kajero et al., 2017), the specifications for 
simulation runs were pseudo-randomly sampled by the Latin hypercube 
sampling (LHS) technique within relatively wide design ranges given in 
Table 1. For collecting 1000 samples, the total data acquisition time (in 

Fig. 2. Various configurations of amine scrubbing process for post-combustion CO2 capture: (a) base configuration, (b) lean vapor recompression (LVR), (c) rich 
vapor recompression (RVR), and (d) lean/rich vapor recompression (LRVR). 
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hour) of each simulation run is given in Fig. 3. In this study, a computer 
with Intel Core i7-7700 CPU 3.60 GHz was used for data acquisition. 
Since the complex rate-based model(s) and recycle loops need to be 
iteratively solved during each steady-state simulation run, the required 
data acquisition periods in all cases are quite long, which again confirms 
the necessity of building surrogate models. It can be clearly seen that the 
acquisition periods of the base and RVR configurations were signifi-
cantly shorter when compared with those of the LVR and LRVR cases. 
This is due to the fact that each of the LVR and LRVR processes includes 
an additional recycle loop at the lean vapor recompression section 
(Dubois and Thomas, 2018). These observations show that adding the 
structural complexity of a process may greatly slow down the data 
acquisition speed. Therefore, enhancing reusability of ANN models via 
engineering insights may effectively reduce the computation effort for 
gathering data (Chuang et al., 2018; Goldstein et al., 2022; Lu et al., 
2009). 

3. Model migration methodology 

Incremental learning (Fayek et al., 2020) (or continual/lifelong/ 
progressive learning (Parisi et al., 2019; Yoon et al., 2018)) techniques 
have been applied to migrate the process knowledge embedded in the 
old model to the new one while at the same time avoid the catastrophic 
interferences (Parisi et al., 2019). Compared with the conventional 
transfer learning methods (Yosinski et al., 2014), incremental learning 
places more attentions on expanding and/or pruning the model archi-
tectures. As a type of connectionist models, it is highly flexible to 
customize inter-layer connections for block-modularizations and pro-
gressive expansion using deep neural networks (Terekhov et al., 2015). 
By increasing the number of hidden neurons, expandable neural 
network has shown its effectiveness to migrate the pre-trained models to 
new tasks with different input–output structures while preserve the 
prior knowledge gained from old tasks (Rusu et al., 2016; Yin et al., 
2020; Yoon et al., 2018). 

As mentioned previously, the data acquisition process is considered 

to be the most time-consuming step for surrogate modeling (Nuchit-
prasittichai and Cremaschi, 2013). If the process configuration is 
modified due to the progress of on-going research, the existing model 
should be no longer suitable for characterizing the new systems. 
Furthermore, with the updated input–output relationships, the existing 
models cannot be directly migrated to describe the more upgraded 
process using the conventional transfer learning methods (Hsiao et al., 
2021; Yosinski et al., 2014). Facing with this dilemma, one may be 
forced to train a new model from scratch again with the new datasets (Li 
et al., 2015; Sipöcz et al., 2011; Wu et al., 2010). On the other hand, by 
extracting the unique features of the expandable neural network archi-
tecture in the literature (Rusu et al., 2016; Yin et al., 2020), an inno-
vative modeling approach has been developed in this study to address 
the aforementioned issues. In the following paragraphs, the mechanisms 
of the proposed model migration method are given in detail. As depicted 
in Fig. 4, the proposed flowchart for surrogate modeling of amine 
scrubbing systems may be divided into four steps, i.e., (1) process data 
acquisition, (2) base process modeling, (3) primary expansion and (4) 
secondary expansion(s). Both primary and secondary expansions are 
followed by new process modeling steps to train the new ANN models 
after expansions. The data acquisition part has been given in subsection 
2.4. As a result, in the following subsections, the latter three steps will be 
introduced in detail. 

3.1. Base process modeling 

As mentioned before, a robust base model should be first trained with 
the conventional method. In this study, a fully-connected feedforward 
neural network (FNN) was adopted for this task. The generalized 
matrix–vector multiplication formulas in each layer of a FNN model can 
be expressed as follows. 

h(j)
i = ϕ

(
W(j)

i h(j)
i− 1 +b(j)

i

)
(1)  

where i and j are the indices of the hidden layers and the existing block 
(i.e., the base model) respectively; h(j)

i denotes the hidden state vectors 
of layer i in block j; W(j)

i and b(j)
i represent the weight matrix and bias 

vector of layer i in block j respectively; ϕ denotes the activation operator, 
which is used to handle the scalar activations of each entity in an arbi-
trary vector. As illustrated in Fig. 4, after a robust base process 
modeling, one should implement the model migration procedure in two 
stages. The first is carried out in one step using the base model only, 
while in the second stage, multi-step modifications are incorporated. 
The details of these stages will be given in the successive subsections. 

3.2. Primary expansion 

As illustrated in Fig. 4(a), a new network block is laterally and layer- 
wisely connected to the existing one (i.e., base model) in the primary 
expansion stage. Catastrophic interference may occur and deteriorate 
the stored knowledge if the model parameters are updated with the new 
datasets (Parisi et al., 2019). To avoid this problem, the parameters of 
the existing block (W(j)

i and b(j)
i ) given in Equation (1) are kept frozen 

Table 1 
The design ranges of amine scrubbing CO2 capture processes.  

Absorber Stripper 

Operating pressure 1.0 bar Operating pressure 1.5–3.0 bar 
Flue gas temperature 40–80 ◦C Condenser temperature 40–80 ◦C 
Flue gas flowrate 30–100 kg/h Lean CO2 loading 0.05–0.45 
Flue gas CO2 concentration 0.05–0.15 Lean flash pressure* 0.3–2.7 bar 
Lean solvent temperature 40–60 ◦C Rich flash pressure* 0.3–0.9 bar 
Lean solvent flowrate 30–500 kg/h Momentum and heat transfer operations 
Lean MEA concentration 0.27–0.33 Min. approach temperature 10 ◦C 
Lean CO2 loading 0.05–0.45 Adiabatic efficiency* 75% 

*Parameters that only used in MVR-based scrubbers 

Fig. 3. The total data acquisition time (in hour) of each simulated 
configuration. 
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during the expansion. Through this way, the prior knowledge embedded 
in the base model may be well preserved. On the other hand, in the 
primary expansion step, the parameters of the expanded block or lateral 
connections (i.e., inter-layer or inter-block connections colored in red as 
given in Fig. 4(a)) are end-to-end trained in a supervised manner with 
the new datasets. To be more specific, the matrix–vector multiplication 
in each layer of the existing block should still follow Eq. (1), while that of 
the expanded block can be expressed with Eq. (2). 

h(k)
i = ϕ

(
W(k)

i h(k)
i− 1 +W(k:j)

i h(j)
i− 1 + b(k)

i

)
(2) 

where k is the index of an expanded block, and h(k)
i denotes the 

hidden state vectors of layer i in block k. Similar to those adopted in Eq. 
(1), W(k)

i and b(k)
i are the weight matrix and bias vector of layer i in block 

k respectively. Finally, notice that W(k:j)
i is the newly initialized weight 

matrix of the lateral connection from layer i − 1 in block j to layer i in 
block k, where the notation k : j represents the lateral connection be-
tween block k and block j (Fayek et al., 2020; Rusu et al., 2016). 

It is necessary to take a closer look at the weight matrices of the 
expanded block and lateral connection. As given in Eq. (3), W(k)

i is a m ×

n′ matrix, where m and n′ are the dimensions of h(k)
i and h(k)

i− 1 respectively. 
On the other hand, as shown in Eq. (4), W(k:j)

i is a m × n matrix, where n 
is the dimensions of h(j)

i− 1. 

W(k)
i =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

w(k)
1,1 w(k)

1,2 ⋯ w(k)
1,n′

w(k)
2,1 w(k)

2,2 ⋯ w(k)
2,n′

⋮ ⋮ ⋱ ⋮
w(k)

m,1 w(k)
m,2 ⋯ w(k)

m,n′

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

i

(3)  

W(k:j)
i =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

w(k:j)
1,1 w(k:j)

1,2 ⋯ w(k:j)
1,n

w(k:j)
2,1 w(k:j)

2,2 ⋯ w(k:j)
2,n

⋮ ⋮ ⋱ ⋮
w(k:j)

m,1 w(k:j)
m,2 ⋯ w(k:j)

m,n

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

i

(4)  

3.3. Secondary expansion 

Since the model may be expanded several times together with the 
modifications of process configuration, the secondary expansions are 
implemented by enlarging the parametric capacity of the expanded 
block. As illustrated in Fig. 4, additional hidden neurons and their cor-
responding randomly initialized weights are added layer-by-layer to the 
expanded block, which has been pre-trained in the primary expansion 
stage. On the other hand, the parameters of the original base model (i.e., 
W(j)

i and b(j)
i ) are still kept intact during the expansion. Notice that a 

Fig. 4. The flowchart of multi-step expansions of base model.  
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proportional of parameters in the expanded block are already physically 
meaningful (i.e., W(k)

i and W(k:j)
i ). These values are expected to be better 

starting points for the training jobs. To facilitate better understanding, 
the secondary expansion is also expressed in a mathematical form and it 
is given below in Equation (5). It can be observed that the matrix–vector 
multiplication in layer i of the expanded block k can be formulated in a 
form which is similar to Equation (2). 

h′(k)
i = ϕ

(
W′(k)

i h′(k)
i− 1 +W′(k:j)

i h′(j)
i− 1 +b′(k)

i

)
(5) 

However, since the expanded block is enlarged again in the sec-
ondary expansion step with the larger numbers of input variables, 
output variables and hidden neurons, the dimensions of the corre-
sponding weight matrix, bias vector and hidden state vector should also 
be modified. As given in Equation (6) and (7), the weight matrices of the 
expanded block and lateral connection are expanded accordingly. Sub- 
matrices W(k)

i and W(k:j)
i are identical to those in Equation (3) and (4) 

respectively, which are physically meaningful. If p nodes are added to 
layer i in block k, sub-matrices V(k)

i and V(k:j)
i (whose dimensions are p ×

n′ and p × n respectively) are added to increase the number of rows in 
each weight matrices (see Equation (6) and (7)). On the other hand, if 
the layer i − 1 in block k is appended with q additional nodes, sub- 
matrices U(k)

i and Z(k)
i (whose dimensions are m × q and p × q respec-

tively) are added to increase the number of columns in the weight matrix 
of layer i in block k (shown in Equation (6)). Consequently, the di-
mensions of the weight matrices of the expanded block and lateral 
connection become (m+p) × (n′+q) and (m+p) × n respectively. If 
secondary expansion is carried out more than once, the abovementioned 
procedure should be repeated in each step. 

W′(k)
i =

⎡

⎣
W(k)

i U(k)
i

V(k)
i Z(k)

i

⎤

⎦=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

w(k)
1,1 w(k)

1,2 ⋯ w(k)
1,n′

w(k)
2,1 w(k)

2,2 ⋯ w(k)
2,n′

⋮ ⋮ ⋱ ⋮
w(k)

m,1 w(k)
m,2 ⋯ w(k)

m,n′

u(k)
1,1 u(k)

1,2 ⋯ u(k)
1,q

u(k)
2,1 u(k)

2,2 ⋯ u(k)
2,q

⋮ ⋮ ⋱ ⋮
u(k)

m,1 u(k)
m,2 ⋯ u(k)

m,q
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4. Numerical experiments 

4.1. Case studies 

For the design of amine scrubbing systems, it is well-known that a 
trade-off is present between the sour gas capture rate and energy con-
sumption rate (Oh et al., 2016). Therefore, the multi-objective optimi-
zation methods may be applied to achieve an appropriate balance 
(Tikadar et al., 2020). Maximizing the sour gas capture rate is equivalent 
to minimizing the emission rate. Therefore, the CO2 emission rate and 
reboiler duty were selected as the output variables of the surrogate 
models of all configurations, while the MVR duty was introduced as an 
extra output for all MVR models. The CO2 emission rate was determined 
by the CO2 content in the treated gas and its vent rate, while the MVR 
duty was the sum of power consumed by the vapor compressors. On the 
other hand, to mimic the input–output relationships of the rigorous 
models, nine variables, i.e., flue gas temperature, flue gas flowrate, flue 
gas CO2 concentration, lean temperature, lean flowrate (i.e., solvent 
circulation rate), lean MEA concentration, lean loading, condenser 
temperature and stripper pressure, were selected as the inputs of all 
surrogate models (see Table 1). According to the modified process 
configuration, two additional variables, i.e., lean and rich flash pres-
sures, were introduced as the extra inputs of MVR models. 

To demonstrate the applicability and flexibility of the presented 
method, five scenarios were studied in this paper. As depicted in Fig. 5, 
all scenarios started from a robust surrogate model of the base config-
uration (see Fig. 1). As mentioned before, the structural modification 
scenarios may be divided into two stages. The primary expansion starts 
from the base model, while the secondary changes are then incorporated 
in the intermediate structures obtained in the primary stage. Three 
primary expansion scenarios can be evolved from the base model, i.e. (1) 
from base model to LVR model (Base-LVR), (2) from base model to RVR 
model (Base-RVR) and (3) from base model to LRVR model (Base- 
LRVR). Furthermore, two secondary expansion scenarios, i.e., (1) from 
Base-LVR model to LRVR model (Base-LVR-LRVR) and (2) from Base- 
RVR model to LRVR model (Base-RVR-LRVR), can also be identified 
from Fig. 5. In each expansion step, there may be additional input(s) 
and/or output(s), and they should be appended to the input and/or 
output layers of the existing models. In this study, several different 
model expansion routes have been analyzed and compared with the 
conventional modeling approach to demonstrate the effectiveness of the 
proposed model-building method. 

4.2. Hyper-parameters 

In this paper, multi-layer feedforward neural networks (FNNs) were 
selected for constructing the surrogate models of amine scrubbers. The 
open-source Keras software was utilized to build and train these FNN 
models. In most applications, FNNs with one or two hidden layers are 
sufficient to approximate an arbitrary function (Stathakis, 2009; Trenn, 
2008). By prior cross validations of the model performances using the 
baseline method (training ANN model from scratch) with the collected 
datasets, it can be observed from Fig. 6 that the two-layer FNNs 
outperform their one-layer counterparts. The optimal numbers of hid-
den neurons of the base, LVR, RVR and LRVR configurations were also 
determined to be 10, 15, 15 and 20 respectively. As listed in Table 2, 
these hyper-parameters were adopted in the case studies. 

To facilitate fair comparisons, the total number of hidden neurons in 
each layer of every expanded model was set to be identical to that in the 
corresponding layer of its baseline counterpart. For example, to obtain 
the LVR model through primary expansion from the base model (which 
is a two-layer FNN with 10 hidden neurons in each layer), 5 additional 
neurons should be placed into the expanded block. Thus, a total of 15 
hidden neurons should be located in each layer (10 and 5 in the existing 
and expanded blocks respectively), which is consistent with the LVR 
model built by the baseline method. All abovementioned details are also 

Y.-D. Hsiao and C.-T. Chang                                                                                                                                                                                                                 



Chemical Engineering Science 281 (2023) 119191

7

given in Table 2. Since the existing blocks of the proposed models were 
frozen during the model expansion steps, notice that even with same 
number of hidden neurons, the number of trainable parameters of the 
proposed method are much smaller than those of its baseline 
counterpart. 

The scaled exponential linear unit (SELU) was selected as the acti-
vation function for each hidden layer (Klambauer et al., 2017), and the 
linear function was used for the output layers. Since the SELU function 
was chosen for the activations of hidden neurons, the Lecun normal 
initializer was selected for random parameter initializations (LeCun 
et al., 2002), and the raw datasets were preprocessed through standard- 
deviation normalization (i.e., z = (x − μ)/σ). The mean squared error 
(MSE) was adopted as the loss function for all output variables. The 
Adam optimizer was selected for gradient descent (Kingma and Ba, 
2014), and the learning rate was set as 0.0005. The reason for using this 
slightly smaller learning rate than the default value (i.e., 0.001) is to 
avoid the potential problem of catastrophic interference caused by 
aggressive parameter updating (Kirkpatrick et al., 2017). 

4.3. Model performance evaluations 

For all modeling tasks, 1000 samples were acquired to be used as the 
testing sets. The remaining 100–1000 samples (according to the sam-
pling size) were divided into two sets which respectively consists 70% 
and 30% of the data, and they were used as the training and validation 
sets respectively. In order to evaluate the model performances, the root 
mean squared error (RMSE) was adopted as the metric for quantifying 
the accuracy of the predicted model outputs. In addition, the R-squared 
(R2) score was also used as an auxiliary metric. For the sake of 
completeness, definitions of these two metrics are given below: 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N

∑N

n=1
(ŷn − yn)

2

√
√
√
√ (8)  

R2 = 1 −
∑

n(ŷn − yn)
2

∑
n(y − yn)

2 (9)  

5. Results and discussions 

5.1. Pre-training of base model 

The surrogate model of base configuration was pre-trained to serve 
as the base model for executing successive neural network architecture 
expansion. In order to provide correct and transferrable knowledge for 
progressive learning, it is important to first produce a highly accurate 
base model. As mentioned earlier, the base model was constructed with 
2 hidden layers, and there were 10 hidden neurons in each layer. The 
base model was designed to predict the CO2 emission rate and reboiler 
duty by nine selected input variables, e.g., lean loading, given in sub-
section 4.1. In this case study, 2000 samples of typical amine scrubbing 
process (Fig. 1) were collected from simulation runs for pre-training the 
base model, which was then tested with 1000 extra samples. As shown in 
Fig. 7, the testing parity plots imply that the base model was able to 
accurately inference both CO2 emission rate and reboiler duty with 
given operating conditions. The R2 scores of each output variable were 
both 0.997, where the corresponding RMSEs were 0.111 kg/h and 0.546 
kW respectively. This well pre-trained base model was then used to serve 
as the starting model for the successive expansion steps. 

Fig. 5. One and two-step process modification scenarios.  
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5.2. Primary expansions 

5.2.1. Modeling of LVR process 
The LVR model was expanded from the base model described in 

subsection 5.1. A new network block with 2 hidden layers and 5 hidden 
neurons at each layer was laterally connected with the existing one. New 
input and output variables, i.e., lean flash pressure and lean vapor 
recompression duty, were respectively appended to the input and output 
layers (see Fig. 4(a)). The new model were trained with 100–1000 
samples (according to the sampling size), and tested with 1000 previ-
ously unused samples. The testing results of LVR models are given in 
Fig. 8. It can be seen that the LVR model is able to predict CO2 emission 
rate and reboiler duty at highly accurate levels regardless of fact that 
relatively few modeling samples were used. Thus, it may be concluded 
that the knowledge stored in the base model was correctly integrated 
into the LVR model. More specifically, the interior features of the base 
block can be transferred for the new learning task. Thus, the new model 
accuracy can be enhanced with small dataset. It took only 450–500 
samples for the proposed method to generate surrogate models with 
similar or even better performances than those of the baseline model 
trained with 1000 samples. The RMSEs of the proposed model trained 
with 500 samples were 0.178 kg/h, 1.109 kW and 0.046 kW for the CO2 

Fig. 6. Prior cross validation results for number of hidden neurons of various 
base models: (a) base process, (b) LVR process, (c) RVR process and (d) 
LRVR process. 

Table 2 
The hyper-parameters for different surrogate modeling cases.  

Hyper-parameters LVR RVR LRVR 

No. of input variables 10 10 11 
No. of output variables 3 3 3 
The baseline method 
No. of hidden layers 2 2 2 
No. of hidden neurons 15 15 20 
No. of parameters 453 453 723 
The proposed method 
Source model Base Base Base LVR RVR 
No. of hidden layers 2 2 2 2 2 
No. of hidden neurons 10 +

5 
10 +
5 

10 +
10 

10+(5 +
5) 

10+(5 +
5) 

No. of trainable 
parameters* 

183 183 393 393 393 

*Number of trainable parameters during model expansion. 

Fig. 7. Testing results of (a) CO2 emission rate, (b) reboiler duty of the 
base model. 
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emission rate, reboiler duty and LVR duty respectively, which were 
similar to those of the baseline model trained with 1000 samples (i.e., 
0.181 kg/h, 1.008 kW and 0.038 kW). The reduction of 500 modeling 
samples implies that around 50–55% of data acquisition time was saved. 

5.2.2. Modeling of RVR process 
The testing results of primary expansions from the base model to 

RVR models were given in Fig. 9. Similar to the network structures of 
LVR models, there was a two-layer neural network block with 5 hidden 
neurons at each layer laterally connected to the existing one. These 
models were also trained and tested with 100–1000 samples (according 
to the sampling size) and 1000 samples respectively. From the predic-
tion results, it can be observed from Fig. 9 that the proposed modeling 

method is superior to its conventional counterpart. Also, the downward 
behaviors of RMSEs associated with the proposed models (solid lines) all 
dropped at much faster speeds than those of the baseline counterparts 
(dashed lines). These smooth trend lines were obtained by applying the 
Savitzky–Golay filter to the experiment results (Savitzky and Golay, 
1964). With only 350 modeling samples, the proposed model was able to 
achieve better prediction accuracy than the baseline model trained with 
1000 samples. The RMSEs of CO2 emission rate, reboiler duty and RVR 
duty of the proposed model were found to be 0.242 kg/h, 2.059 kW and 
0.053 kW respectively, which is much better performances than those of 
the baseline model also trained with 350 samples (i.e., 0.696 kg/h, 
3.906 kW and 0.097 kW). Besides, the prediction results were also 
similar to those of its baseline counterpart trained with 1000 samples (i. 
e., 0.254 kg/h, 2.000 kW and 0.054 kW). The above observations imply 
that around 65.8% of data acquisition time may be saved for building 
the RVR model with similar prediction accuracies. This finding means 
that the data acquisition effort can be drastically lowered and also the 
modeling efficiency greatly enhanced. On the other hand, when similar 
modeling samples are available, 65.2%, 47.3% and 45.4% of predictive 
errors of the above-mentioned different outputs may be effectively 
reduced. 

5.2.3. Modeling of LRVR process 
There are two ways to produce LRVR model by properly using the 

proposed method, i.e., primary and secondary expansions (see Fig. 5). In 
this subsection, the case of direct primary expansion from base model is 
presented, while the cases concerning the secondary expansions will be 
discussed later in the next subsection. Different from the LVR and RVR 
configurations, the base model was laterally appended by a two-layer 
network block with 10 hidden neurons at each layer, but also trained 
and tested with 100–1000 samples (according to the sampling size) and 
1000 samples respectively. As given in Fig. 10, the expandable neural 
networks worked well in executing transfer learning of either CO2 
emission rate or reboiler duty. The trend lines of the proposed method 
were much lower than their baseline counterparts. However, it can also 
be said that the improvement in prediction accuracy of the MVR duty 
may be quite limited, where the two trend lines in Fig. 10 are close to 
each other. Such results refute not only the claim of accuracy 

Fig. 8. Testing results of surrogate models of LVR configuration.  

Fig. 9. Testing results of surrogate models of RVR configuration.  Fig. 10. Testing results of LRVR models obtained from primary expansion.  
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enhancement but also the hope of sampling size reduction. The proposed 
method required 750 samples to create a surrogate model with similar 
performance when compared with that of another model trained with 
1000 samples by the baseline method. Specifically, the above observa-
tions sum up to the quantitative statistics that that 250 samples were 
reduced or around 23% of the data acquisition time was saved. The 
extent of modeling efficiency enhancement is much smaller than those 
achieved by LVR and RVR models. 

5.3. Secondary expansions 

As mentioned in the previous subsection, aside from primary 
expansion of the base model, the secondary expansion of LVR or RVR 
model is another option to construct LRVR model by using the proposed 
method. The model testing results of secondary expansions of LVR and 
RVR models to LRVR models are given in Fig. 11 and Fig. 12 respec-
tively. In each case, five new nodes were added to every hidden layer of 
the expanded blocks, and these models were also trained and tested by 
100–1000 samples (according to the sampling size) and 1000 samples 
respectively. For the Base-LVR-LRVR scenario, the LVR models trained 
respectively with 500 and 1000 samples were chosen to serve as the 
source models for expansion. On the other hand, the RVR models trained 
respectively with 350 and 1000 samples were used in the Base-RVR- 
LRVR scenario. The testing results of these scenarios were compared 
with those obtained by the baseline method. 

From the testing results given in Fig. 11 and Fig. 12, when the 
modeling datasets were relatively small, it can be seen that the source 
models had no significant impacts on the model performances. How-
ever, as the number of samples increased, slightly differences can be 
detected. In particular, the source models trained with more samples 
resulted in slightly more accurate secondary models. If compared with 
the ones obtained by direct primary expansions, the LRVR models 
derived from the secondary expansions had better performances when 
similar numbers of modeling samples were used. This is reasonable since 
the initial parameters of the expanded block were at different levels for 
the cases of direct primary expansion and indirect secondary expan-
sions. Notice that the expanded parameters of the former model were all 
randomly initialized, while those in the latter were initialized partially 
with the parameters gained from the previous expansion steps. 

5.4. Further discussions 

5.4.1. Reduction of total data acquisition time 
The modeling efficiency improvement by using the proposed method 

is further discussed below. A comprehensive comparison between the 
baseline and proposed methods is given in Table 3. It can be clearly 
observed that the performances of the paired baseline and proposed 
models were highly similar to each other. However, with prior knowl-
edge extracted from the previous modeling tasks, the proposed models 
required fewer samples for training. This outcome suggests that the 
corresponding data acquisition time may be reduced. In the LVR and 
RVR models, 46.5% and 65.8% of data acquisition time may be saved 
due to the fact that the required sample sizes were reduced from 1000 to 
500 and 350 respectively. On the other hand, for the LRVR models, by 
following alternative secondary expansion routes, 23–38.4% of the data 
acquisition time was reduced. It can be concluded that the models ob-
tained with secondary expansion outperformed the one by direct pri-
mary expansion. Furthermore, these models may be used 
simultaneously, e.g., for the comparative studies of different process 
configurations. It is important to investigate the overall modeling effi-
ciency in the lifecycle of process research and development. Therefore, 
the total data acquisition time was further summed and analyzed to 
show the effectiveness of the proposed method. From the results, it can 
be said that the best routes for obtaining the LVR, RVR and LRVR models 
were expansions via the sequences of Base-LVR, Base-RVR and Base- 
RVR-LRVR, and the corresponding data acquisition times were 7.699, 
3.674 and 11.868 h respectively (see Table 3). In other words, these time 
savings represent 53.5%, 34.2% and 61.6% of those used to generate the 
baseline models. Finally, notice that the total acquisition time was 
23.241 h, which is 52.36% of that needed to apply the baseline method. 

5.4.2. Enhancement of model performance 
Aside from reduction in data acquisition time, the enhanced model 

performances are presented in Table 4. With identical sample size (i.e., 
1000 samples), the prediction accuracies of improved models can be 
compared with those of the baseline models. For all outputs of the LVR 
and RVR models, approximately 20–55% of prediction errors may be 
eliminated. On the other hand, 5–45% of prediction errors were elimi-
nated with the improved LRVR model. Therefore, it may be concluded Fig. 11. Testing results of LRVR models from secondary expansions of 

LVR models. 

Fig. 12. Testing results of LRVR models from secondary expansions of 
RVR models. 
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that the modeling approach of gradual and progressive expansions of the 
surrogate ANNs should be preferred over the one-step expansion strat-
egy since the models obtained in former case is superior to those created 
by the latter strategy in terms of both data acquisition time and pre-
diction accuracy. 

5.4.3. Sensitivity analysis 
For realistic engineering applications, it is essential to make sure that 

the correct input–output relationships are captured by the surrogate 
models. Aside from the prediction accuracies, it is also important to 
examine the physical consistencies between process mechanisms and 
model behaviors (Hsiao et al., 2021). One of the most commonly used 
interpretation approaches for ANNs is the sensitivity analysis. In this 
study, the perturbation-based method was adopted for sensitivity anal-
ysis to compare the mechanistic behaviors of the high-fidelity model and 
those of the surrogate models based on different modeling strategies 
(Wu et al., 2010). The core concept of perturbation-based sensitivity 
analysis is similar to process gain, where a disturbance is applied to a 
selected input variable (i.e., manipulated variable), and the corre-
sponding variations of output variables (i.e., controlled variables) are 
then analyzed (McIntosh and Mahalec, 1991). The sensitivity analyses of 
surrogate models have been done by recursively implementing local 
perturbations on different input variables. On the other hand, the first- 
order Taylor approximation was adopted to estimate the steady-state 
gains of the LRVR process, which was accomplished by multi-variate 
linear regressions of the transformed dataset consisted of Δxi (where 
xi represent the input variables, e.g., lean loading and stripper pressure) 
and Δyk (where yk denote the output variables, i.e., CO2 emission rate, 
reboiler duty and MVR duty), where the proportional coefficients (Ki,k) 
of the fitted linear models in Equation (10), were considered as the 

proxy steady-state gains of the high-fidelity models (McIntosh and 
Mahalec, 1991; Montavon et al., 2018). 

Δyj =
∑N

i=1
KijΔxi∀j = 1, 2, 3 (10) 

As depicted in Fig. 13, the results of sensitivity analyses of LRVR 
models from various sources were visualized as the heat maps. The 
values given in the hear maps are the averaged process gains (i.e., Kij) of 
any paired xi and yj. It can be clearly seen that the heat maps were highly 
similar to the one of the first-order Taylor expansion, which implies that 
the surrogate models were able to correctly capture the critical sensi-
tivity relationships as those of the high-fidelity model. For example, all 
models showed that there were six inputs (i.e., lean loading, lean MEA 
concentration, flue gas CO2 concentration, stripper pressure, lean flash 
pressure and rich flash pressure) causing significant impact on the 
response in reboiler duty. The values of reboiler duty increases as the 
lean loading or stripper pressure decreases, and also increases as the lean 
MEA concentration or the flue gas CO2 concentration increases. 
Furthermore, for the LRVR process, it is also crucial to correctly capture 
the relationships between the energy duties with the lean and rich flash 
pressures. It can be observed from the heat maps that all models showed 
the cause-and-effect connections that the increased flash pressures result 
in increased reboiler duty and decreased LRVR duty, which were also 
consistent with the background knowledge of the LRVR configuration. 

Finally, it should be noted that the values shown on the heat maps 
were the averaged values resulting from each sensitivity analysis (Wu 
et al., 2010). Although there were minor differences among these ana-
lytic results, the key information extracted from these analyses is how a 
specific output variable may respond due to a change in certain input 

Table 3 
Data acquisition times for models with similar prediction performances.  

Surrogate models LVR RVR LRVR 

Parametric initialization Baseline Random Random Random 

Proposed Base Base Base LVR-500 RVR-350 

Number of modeling samples Baseline 1000 1000 1000 
Proposed 500 350 750 700 600 

RMSEs of CO2 emission rate (kg/h) Baseline 0.181 0.254 0.204 
Proposed 0.178 0.242 0.172 0.153 0.129 

RMSEs of reboiler duty (kW) Baseline 1.008 2.000 2.056 
Proposed 1.109 2.059 1.713 1.772 1.734 

RMSEs of MVR duty (kW) Baseline 0.038 0.054 0.085 
Proposed 0.046 0.053 0.080 0.093 0.099 

Data acquisition time of each model (hour) Baseline 14.384 10.737 19.264 
Proposed 7.699 3.674 14.832 13.992 11.868 

− 46.5% − 65.8% –23.0% − 27.4% − 38.4% 
Minimum total data acquisition time (hour) Baseline 14.384 + 10.737 + 19.264 = 44.385 (100%) 

Proposed 7.699 + 3.674 + 11.868 = 23.241 (52.36%)  

Table 4 
Model performance enhancement with same amount of modeling samples.  

Surrogate models LVR RVR LRVR 

Parametric initialization Baseline Random Random Random 

Proposed Base Base Base LVR-1000 RVR-1000 

Number of modeling samples Baseline 1000 1000 1000 
Proposed 1000 1000 1000 1000 1000 

RMSEs of CO2 emission rate (kg/h) Baseline 0.181 0.254 0.204 
Proposed 0.145 0.192 0.166 0.109 0.126 

− 19.9% − 24.4% − 18.6% − 46.6% − 38.2% 
RMSEs of reboiler duty (kW) Baseline 1.008 2.000 2.056 

Proposed 0.694 1.528 1.896 1.788 1.357 
− 31.2% –23.6% − 7.8% − 13.0% − 34.0% 

RMSEs of MVR duty (kW) Baseline 0.038 0.054 0.085 
Proposed 0.027 0.024 0.087 0.073 0.077 

− 28.9% − 55.6% +2.4% − 14.1% − 9.4%  
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Fig. 13. Results of sensitivity analyses of LRVR models from various source models.  

Fig. 14. Model testing results before and after training using the proposed method.  

Y.-D. Hsiao and C.-T. Chang                                                                                                                                                                                                                 



Chemical Engineering Science 281 (2023) 119191

13

variable (Wu et al., 2010). Since the gain scales and gain signs of key 
input variables of various proposed surrogate models were consistent 
with the results of either first-order Taylor approximations or the 
baseline model, these data-driven surrogate models are physically 
interpretable and able to provide correct process mechanisms. 

5.4.4. Effects of source models 
To pinpoint the root cause of the effectiveness of the proposed 

method, the testing results of surrogate models originated from several 
different source models were depicted in Fig. 14. The blue round and red 
squared data points are the model prediction results before and after 
training respectively. Since the parameters of the proposed models were 
not completely randomly initialized, the predictions of the already 
known output variables before training were initially already at rela-
tively high accurate levels but with only minor deviations from the true 
values. After the models were properly trained, the input–output re-
lationships among the old outputs and new inputs may be captured by 
the expanded block, and the aforementioned predictive errors were then 
eliminated. On the other hand, in the primary expansion cases, since the 
additional output variable, i.e., MVR duty, was not learned by the base 
model, the parameters related to this new output were totally randomly 
initialized, which resulted in poor prediction performances. Indeed, it 
can be observed from Fig. 14 that for the primary expansion cases 
(column 1–3), the predicted values before training are far away from the 
dashed diagonal lines in the parity plots of MVR duties. 

6. Conclusions and future perspectives 

Accurate models of amine scrubbing configurations are essential for 
evaluating their techno-economic feasibility. In fact, most existing 
works were carried out mainly on the basis of rigorous simulation re-
sults. However, proper incorporation of high-fidelity simulators with 
numerical optimization frameworks are rarely found nowadays. This 
important task is usually hindered by the overwhelming computation 
efforts needed in the simulation studies, while any increase in process 
complexity inevitably makes this problem even more forbidding. On the 
other hand, although efficient construction of the data-driven models 
have already been attempted in the past to relieve the above practical 
burden, the data acquisition work is still very time-consuming. In this 
paper, a novel data-driven modeling method based on expandable 
neural networks has been proposed to construct the surrogate models for 
further reducing the aforementioned difficulties. By using this novel 
modeling procedure, the existing ANN models can be reused for the 
subsequent model expansion tasks. With the expandable neural net-
works, it becomes possible to incorporate new input/output features and 
hidden parameters according to the revamped system configurations. 
From the numerical experiment results obtained in case studies con-
cerning four amine scrubbing configurations, over 47% of total data 
acquisition time can be saved, and, also, the model performances can be 
greatly enhanced. Furthermore, via the corresponding sensitivity ana-
lyses, it can be shown that the proposed surrogate models were able to 
capture existing process knowledge embedded in the raw data. Although 
the proposed modeling method was preliminarily shown to be effective, 
further extensions to more advanced CO2 capture schemes, e.g., the 
complex stream splitting arrangements (Cho et al., 2015; Oh et al., 
2016), the hybrid physical–chemical absorption process (Zhang et al., 
2020) and even other chemical processes, etc., are still worthy of further 
investigations. 
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